Nothing
simTBinom <- function(J.x, J.y, n.time, weights, beta, sp.only = 0,
trend = TRUE, psi.RE = list(), sp = FALSE,
cov.model, sigma.sq, phi, nu, svc.cols = 1,
ar1 = FALSE, rho, sigma.sq.t, x.positive = FALSE, ...) {
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Subroutines -----------------------------------------------------------
rmvn <- function(n, mu=0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p)))){stop("Dimension problem!")}
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
# Check function inputs -------------------------------------------------
# J.x -------------------------------
if (missing(J.x)) {
stop("error: J.x must be specified")
}
if (length(J.x) != 1) {
stop("error: J.x must be a single numeric value.")
}
# J.y -------------------------------
if (missing(J.y)) {
stop("error: J.y must be specified")
}
if (length(J.y) != 1) {
stop("error: J.y must be a single numeric value.")
}
J <- J.x * J.y
# n.time ---------------------------
if (missing(n.time)) {
stop("error: n.time must be specified.")
}
# weights -----------------------------
if (missing(weights)) {
stop("error: weights must be specified.")
}
if (!is.matrix(weights)) {
stop(paste("error: weights must be a matrix with ", J, " rows and ", max(n.time), " columns", sep = ''))
}
if (nrow(weights) != J | ncol(weights) != max(n.time)) {
stop(paste("error: weights must be a matrix with ", J, " rows and ", max(n.time), " columns", sep = ''))
}
# beta ------------------------------
if (missing(beta)) {
stop("error: beta must be specified.")
if (length(beta) <= 1) {
stop("error: beta must have at least two elements (intercept and trend)")
}
}
# psi.RE ----------------------------
names(psi.RE) <- tolower(names(psi.RE))
if (!is.list(psi.RE)) {
stop("error: if specified, psi.RE must be a list with tags 'levels' and 'sigma.sq.psi'")
}
if (length(names(psi.RE)) > 0) {
if (!'sigma.sq.psi' %in% names(psi.RE)) {
stop("error: sigma.sq.psi must be a tag in psi.RE with values for the occurrence random effect variances")
}
if (!'levels' %in% names(psi.RE)) {
stop("error: levels must be a tag in psi.RE with the number of random effect levels for each occurrence random intercept.")
}
}
# Spatial parameters ----------------
if (length(svc.cols) > 1 & !sp) {
stop("error: if simulating data with spatially-varying coefficients, set sp = TRUE")
}
if (sp) {
if(missing(sigma.sq)) {
stop("error: sigma.sq must be specified when sp = TRUE")
}
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if(missing(cov.model)) {
stop("error: cov.model must be specified when sp = TRUE")
}
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")
}
if (cov.model == 'matern' & missing(nu)) {
stop("error: nu must be specified when cov.model = 'matern'")
}
p.svc <- length(svc.cols)
if (length(phi) != p.svc) {
stop("error: phi must have the same number of elements as svc.cols")
}
if (length(sigma.sq) != p.svc) {
stop("error: sigma.sq must have the same number of elements as svc.cols")
}
if (cov.model == 'matern') {
if (length(nu) != p.svc) {
stop("error: nu must have the same number of elements as svc.cols")
}
}
}
# AR1 -------------------------------
if (ar1) {
if (missing(rho)) {
stop("error: rho must be specified when ar1 = TRUE")
}
if (missing(sigma.sq.t)) {
stop("error: sigma.sq.t must be specified when ar1 = TRUE")
}
}
# Subroutines -----------------------------------------------------------
logit <- function(theta, a = 0, b = 1){log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1){b-(b-a)/(1+exp(z))}
# Occurrence ------------------------------------------------------------
p.occ <- length(beta)
n.time.max <- max(n.time, na.rm = TRUE)
X <- array(NA, dim = c(J, n.time.max, p.occ))
X[, , 1] <- 1
if (p.occ > 1) {
if (trend) { # If simulating data with a trend
# By default the second simulated covariate is a standardized trend
X[, , 2] <- scale(c(matrix(rep(1:n.time.max, each = J), nrow = J, ncol = n.time.max)))
if (p.occ > 2) {
for (i in 3:p.occ) {
if (i %in% sp.only) {
X[, , i] <- rep(rnorm(J), n.time.max)
} else {
X[, , i] <- rnorm(J * n.time.max)
}
}
}
} else { # If not simulating data with a trend
if (p.occ > 1) {
for (i in 2:p.occ) {
if (i %in% sp.only) {
X[, , i] <- rep(rnorm(J), n.time.max)
} else {
X[, , i] <- rnorm(J * n.time.max)
}
}
}
}
}
if (x.positive) {
if (p.occ > 1) {
for (i in 2:p.occ) {
X[, , i] <- runif(J * n.time.max, 0, 1)
}
}
}
# Random effects --------------------------------------------------------
if (length(psi.RE) > 0) {
p.occ.re <- length(psi.RE$levels)
sigma.sq.psi <- rep(NA, p.occ.re)
n.occ.re.long <- psi.RE$levels
n.occ.re <- sum(n.occ.re.long)
beta.star.indx <- rep(1:p.occ.re, n.occ.re.long)
beta.star <- rep(0, n.occ.re)
X.re <- array(NA, dim = c(J, n.time.max, p.occ.re))
for (i in 1:p.occ.re) {
if (length(psi.RE$site.re) == 0) psi.RE$site.re <- FALSE
if (psi.RE$site.re == TRUE) {
if (i == 1) {
site.vals <- 1:J
X.re[, , i] <- site.vals
} else {
X.re[, , i] <- sample(1:psi.RE$levels[i], J * n.time.max, replace = TRUE)
}
} else {
X.re[, , i] <- sample(1:psi.RE$levels[i], J * n.time.max, replace = TRUE)
}
beta.star[which(beta.star.indx == i)] <- rnorm(psi.RE$levels[i], 0, sqrt(psi.RE$sigma.sq.psi[i]))
}
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, , j] <- X.re[, , j] + max(X.re[, , j - 1])
}
}
beta.star.sites <- apply(X.re, c(1, 2), function(a) sum(beta.star[a]))
} else {
X.re <- NA
beta.star <- NA
}
# Simulate spatial random effect ----------------------------------------
# Matrix of spatial locations
s.x <- seq(0, 1, length.out = J.x)
s.y <- seq(0, 1, length.out = J.y)
coords <- as.matrix(expand.grid(s.x, s.y))
if (sp) {
w.mat <- matrix(NA, J, p.svc)
if (cov.model == 'matern') {
theta <- cbind(phi, nu)
} else {
theta <- as.matrix(phi)
}
for (i in 1:p.svc) {
Sigma <- mkSpCov(coords, as.matrix(sigma.sq[i]), as.matrix(0), theta[i, ], cov.model)
# Random spatial process
w.mat[, i] <- rmvn(1, rep(0, J), Sigma)
}
X.w <- X[, , svc.cols, drop = FALSE]
w.sites <- matrix(0, J, n.time.max)
for (j in 1:J) {
for (t in 1:n.time.max) {
w.sites[j, t] <- w.mat[j, ] %*% X.w[j, t, ]
}
}
} else {
w.mat <- NA
w.sites <- matrix(0, J, n.time.max)
}
# Simulate temporal (AR1) random effect ---------------------------------
if (ar1) {
exponent <- abs(matrix(1:n.time.max - 1, nrow = n.time.max,
ncol = n.time.max, byrow = TRUE) - (1:n.time.max - 1))
Sigma.eta <- sigma.sq.t * rho^exponent
eta <- rmvn(1, rep(0, n.time.max), Sigma.eta)
} else {
eta <- matrix(rep(0, n.time.max))
}
# Simulate data ---------------------------------------------------------
psi <- matrix(NA, J, max(n.time))
y <- matrix(NA, J, max(n.time))
for (j in 1:J) {
for (t in 1:n.time.max) {
if (length(psi.RE) > 0) {
psi[j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta) + w.sites[j, t] + beta.star.sites[j, t] +
eta[t])
} else {
psi[j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta) + w.sites[j, t] + eta[t])
}
} # t
for (t in 1:n.time[j]) {
y[j, t] <- rbinom(1, weights[j, t], psi[j, t])
}
} # j
return(
list(X = X, coords = coords, psi = psi, y = y, w = w.mat,
X.re = X.re, beta.star = beta.star, eta = eta)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.