Nothing
simTIntOcc <- function(n.data, J.x, J.y, J.obs, n.time, data.seasons, n.rep, n.rep.max,
beta, alpha, sp.only = 0, trend = TRUE, psi.RE = list(),
p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, ar1 = FALSE, rho, sigma.sq.t,
x.positive = FALSE, ...) {
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Subroutines -----------------------------------------------------------
rmvn <- function(n, mu=0, V = matrix(1)){
p <- length(mu)
if(any(is.na(match(dim(V),p)))){stop("Dimension problem!")}
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
logit <- function(theta, a = 0, b = 1){log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1){b-(b-a)/(1+exp(z))}
# n.data -------------------------------
if (missing(n.data)) {
stop("error: n.data must be specified")
}
if (length(n.data) != 1) {
stop("error: n.data must be a single numeric value.")
}
# J.x -------------------------------
if (missing(J.x)) {
stop("error: J.x must be specified")
}
if (length(J.x) != 1) {
stop("error: J.x must be a single numeric value.")
}
# J.y -------------------------------
if (missing(J.y)) {
stop("error: J.y must be specified")
}
if (length(J.y) != 1) {
stop("error: J.y must be a single numeric value.")
}
J <- J.x * J.y
# J.obs -----------------------------
if (missing(J.obs)) {
stop("error: J.obs must be specified")
}
if (length(J.obs) != n.data) {
stop(paste("error: J.obs must be a vector of length ", n.data, sep = ''))
}
# n.time ---------------------------
if (missing(n.time)) {
stop("error: n.time must be specified.")
}
# n.rep -----------------------------
if (missing(n.rep)) {
stop("error: n.rep must be specified.")
}
if (!is.list(n.rep)) {
stop(paste("error: n.rep must be a list of ", n.data, " vectors", sep = ''))
}
if (length(n.rep) != n.data) {
stop(paste("error: n.rep must be a list of ", n.data, " vectors", sep = ''))
}
for (i in 1:n.data) {
if (!is.matrix(n.rep[[i]])) {
stop(paste("error: n.rep must be a matrix with ", J.obs[i], " rows and ",
max(n.time[[i]]), " columns", sep = ''))
}
if (nrow(n.rep[[i]]) != J.obs[i] | ncol(n.rep[[i]]) != max(n.time[[i]])) {
stop(paste("error: n.rep must be a matrix with ", J.obs[i], " rows and ",
max(n.time[[i]]), " columns", sep = ''))
}
}
if (missing(n.rep.max)) {
n.rep.max <- sapply(n.rep, max, na.rm = TRUE)
}
# beta ------------------------------
if (missing(beta)) {
stop("error: beta must be specified.")
}
# alpha -----------------------------
if (missing(alpha)) {
stop("error: alpha must be specified.")
}
if (!is.list(alpha)) {
stop(paste("error: alpha must be a list with ", n.data, " vectors", sep = ''))
}
# psi.RE ----------------------------
names(psi.RE) <- tolower(names(psi.RE))
if (!is.list(psi.RE)) {
stop("error: if specified, psi.RE must be a list with tags 'levels' and 'sigma.sq.psi'")
}
if (length(names(psi.RE)) > 0) {
if (!'sigma.sq.psi' %in% names(psi.RE)) {
stop("error: sigma.sq.psi must be a tag in psi.RE with values for the occurrence random effect variances")
}
if (!'levels' %in% names(psi.RE)) {
stop("error: levels must be a tag in psi.RE with the number of random effect levels for each occurrence random intercept.")
}
}
# p.RE ----------------------------
if (!is.list(p.RE)) {
stop(paste("error: if species, p.RE must be a list with ", n.data, " lists", sep = ''))
}
if (length(p.RE) > 0) {
for (q in 1:n.data) {
names(p.RE[[q]]) <- tolower(names(p.RE[[q]]))
if (!is.list(p.RE[[q]])) {
stop("error: if specified, p.RE[[", q, "]] must be a list with tags 'levels' and 'sigma.sq.p'")
}
if (length(names(p.RE[[q]])) > 0) {
if (!'sigma.sq.p' %in% names(p.RE[[q]])) {
stop("error: sigma.sq.p must be a tag in p.RE[[", q, "]] with values for the detection random effect variances")
}
if (!'levels' %in% names(p.RE[[q]])) {
stop("error: levels must be a tag in p.RE[[", q, "]] with the number of random effect levels for each detection random intercept.")
}
}
}
}
# Spatial parameters ----------------
if (sp) {
if(missing(sigma.sq)) {
stop("error: sigma.sq must be specified when sp = TRUE")
}
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if(missing(cov.model)) {
stop("error: cov.model must be specified when sp = TRUE")
}
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")
}
if (cov.model == 'matern' & missing(nu)) {
stop("error: nu must be specified when cov.model = 'matern'")
}
p.svc <- length(svc.cols)
if (length(phi) != p.svc) {
stop("error: phi must have the same number of elements as svc.cols")
}
if (length(sigma.sq) != p.svc) {
stop("error: sigma.sq must have the same number of elements as svc.cols")
}
if (cov.model == 'matern') {
if (length(nu) != p.svc) {
stop("error: nu must have the same number of elements as svc.cols")
}
}
}
# AR1 -------------------------------
if (ar1) {
if (missing(rho)) {
stop("error: rho must be specified when ar1 = TRUE")
}
if (missing(sigma.sq.t)) {
stop("error: sigma.sq.t must be specified when ar1 = TRUE")
}
}
# data.seasons ------------------------
if (missing(data.seasons)) {
stop("error: data.seasons must be specified")
if (length(data.seasons) != n.data) {
stop(paste0("data.seasons must be a list with ", n.data, " vectors"))
}
}
n.time.total <- length(unique(unlist(data.seasons)))
n.time.max <- sapply(data.seasons, length)
# Matrix of spatial locations -------------------------------------------
s.x <- seq(0, 1, length.out = J.x)
s.y <- seq(0, 1, length.out = J.y)
coords <- as.matrix(expand.grid(s.x, s.y))
# Get site ids for each of the data sets --------------------------------
# Data sources can be obtained at multiple different sites.
sites <- list()
for (i in 1:n.data) {
sites[[i]] <- sort(sample(1:J, J.obs[i], replace = FALSE))
}
# Occurrence ------------------------------------------------------------
p.occ <- length(beta)
# A list of list, with each list corresponding a data set, and then the list
# underneath giving the corresponding years that each site is sampled.
time.indx <- matrix(0, J, n.time.total)
time.indx <- list()
for (i in 1:n.data) {
time.indx[[i]] <- list()
for (j in 1:J.obs[i]) {
curr.time <- sample(1:n.time.max[i], n.time[[i]][j], replace = FALSE)
time.indx[[i]][[j]] <- which(!is.na(n.rep[[i]][j, ]))
}
}
X <- array(NA, dim = c(J, n.time.total, p.occ))
X[, , 1] <- 1
if (p.occ > 1) {
if (trend) { # If simulating data with a trend
# By default the second simulated covariate is a standardized trend
X[, , 2] <- scale(c(matrix(rep(1:n.time.total, each = J), nrow = J, ncol = n.time.total)))
if (p.occ > 2) {
for (i in 3:p.occ) {
if (i %in% sp.only) {
X[, , i] <- rep(rnorm(J), n.time.total)
} else {
X[, , i] <- rnorm(J * n.time.total)
}
}
}
} else { # If not simulating data with a trend
if (p.occ > 1) {
for (i in 2:p.occ) {
if (i %in% sp.only) {
X[, , i] <- rep(rnorm(J), n.time.total)
} else {
X[, , i] <- rnorm(J * n.time.total)
}
}
}
}
}
if (x.positive) {
if (p.occ > 1) {
for (i in 2:p.occ) {
X[, , i] <- runif(J * n.time.total, 0, 1)
}
}
}
# Form detection covariates (if any) ------------------------------------
X.p <- list()
rep.indx <- list()
for (i in 1:n.data) {
rep.indx[[i]] <- list()
n.alpha.curr <- length(alpha[[i]])
K.curr <- n.rep[[i]]
J.curr <- J.obs[[i]]
for (j in 1:J.curr) {
rep.indx[[i]][[j]] <- list()
for (t in time.indx[[i]][[j]]) {
rep.indx[[i]][[j]][[t]] <- sample(1:n.rep.max[i], n.rep[[i]][j, t],
replace = FALSE)
}
}
X.p[[i]] <- array(NA, dim = c(J.curr, n.time.max[i], n.rep.max[i], n.alpha.curr))
X.p[[i]][, , , 1] <- 1
if (n.alpha.curr > 1) {
for (q in 2:n.alpha.curr) {
for (j in 1:J.curr) {
for (t in time.indx[[i]][[j]]) {
for (k in rep.indx[[i]][[j]][[t]]) {
X.p[[i]][j, t, k, 2:n.alpha.curr] <- rnorm(n.alpha.curr - 1)
} # k
} # t
} # j
} # q
}
} # i
# Random effects --------------------------------------------------------
# Occupancy -------------------------
if (length(psi.RE) > 0) {
p.occ.re <- length(psi.RE$levels)
sigma.sq.psi <- rep(NA, p.occ.re)
n.occ.re.long <- psi.RE$levels
n.occ.re <- sum(n.occ.re.long)
beta.star.indx <- rep(1:p.occ.re, n.occ.re.long)
beta.star <- rep(0, n.occ.re)
X.re <- array(NA, dim = c(J, n.time.total, p.occ.re))
for (i in 1:p.occ.re) {
if (length(psi.RE$site.re) == 0) psi.RE$site.re <- FALSE
if (psi.RE$site.re == TRUE) {
if (i == 1) {
site.vals <- 1:J
X.re[, , i] <- site.vals
} else {
X.re[, , i] <- sample(1:psi.RE$levels[i], J * n.time.total, replace = TRUE)
}
} else {
X.re[, , i] <- sample(1:psi.RE$levels[i], J * n.time.total, replace = TRUE)
}
beta.star[which(beta.star.indx == i)] <- rnorm(psi.RE$levels[i], 0, sqrt(psi.RE$sigma.sq.psi[i]))
}
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, , j] <- X.re[, , j] + max(X.re[, , j - 1])
}
}
beta.star.sites <- apply(X.re, c(1, 2), function(a) sum(beta.star[a]))
} else {
X.re <- NA
beta.star <- NA
}
if (length(p.RE) > 0) {
p.det.re <- list()
n.det.re.long <- list()
n.det.re <- list()
alpha.star.indx <- list()
alpha.star <- list()
alpha.star.sites <- list()
X.p.re <- list()
for (q in 1:n.data) {
if (length(p.RE[[q]]) > 0) {
p.det.re[[q]] <- length(p.RE[[q]]$levels)
n.det.re.long[[q]] <- p.RE[[q]]$levels
n.det.re[[q]] <- sum(n.det.re.long[[q]])
alpha.star.indx[[q]] <- rep(1:p.det.re[[q]], n.det.re.long[[q]])
alpha.star[[q]] <- rep(0, n.det.re[[q]])
X.p.re[[q]] <- array(NA, dim = c(J.obs[[q]], n.time.max[q],
n.rep.max[q], p.det.re[[q]]))
for (i in 1:p.det.re[[q]]) {
X.p.re[[q]][, , , i] <- sample(1:p.RE[[q]]$levels[i],
n.time.max[q] * J.obs[q] * n.rep.max[q],
replace = TRUE)
alpha.star[[q]][which(alpha.star.indx[[q]] == i)] <- rnorm(p.RE[[q]]$levels[i],
0,
sqrt(p.RE[[q]]$sigma.sq.p[i]))
}
for (j in 1:J.obs[[q]]) {
for (t in time.indx[[q]][[j]])
X.p.re[[q]][j, t, -rep.indx[[q]][[j]][[t]], ] <- NA
}
if (p.det.re[[q]] > 1) {
for (j in 2:p.det.re[[q]]) {
X.p.re[[q]][, , , j] <- X.p.re[[q]][, , , j] + max(X.p.re[[q]][, , , j - 1],
na.rm = TRUE)
}
}
alpha.star.sites[[q]] <- apply(X.p.re[[q]], c(1, 2, 3), function(a) sum(alpha.star[[q]][a]))
} else {
X.p.re[[q]] <- NA
alpha.star[[q]] <- NA
alpha.star.sites[[q]] <- NA
}
} # q (n.data)
} else {
X.p.re <- NA
alpha.star <- NA
}
# Simulate spatial random effects ---------------------------------------
if (sp) {
w.mat <- matrix(NA, J, p.svc)
if (cov.model == 'matern') {
theta <- cbind(phi, nu)
} else {
theta <- as.matrix(phi)
}
for (i in 1:p.svc) {
Sigma.full <- mkSpCov(coords, as.matrix(sigma.sq[i]), as.matrix(0), theta[i, ], cov.model)
w.mat[, i] <- rmvn(1, rep(0, nrow(Sigma.full)), Sigma.full)
}
X.w <- X[, , svc.cols, drop = FALSE]
w.sites <- matrix(0, J, n.time.total)
for (j in 1:J) {
for (t in 1:n.time.total) {
w.sites[j, t] <- w.mat[j, ] %*% X.w[j, t, ]
}
}
} else {
w.mat <- NA
w.mat.full <- NA
w.sites <- matrix(0, J, n.time.total)
}
# Simulate temporal AR random effect ------------------------------------
if (ar1) {
exponent <- abs(matrix(1:n.time.total - 1, nrow = n.time.total,
ncol = n.time.total, byrow = TRUE) - (1:n.time.total - 1))
Sigma.eta <- sigma.sq.t * rho^exponent
eta <- rmvn(1, rep(0, n.time.total), Sigma.eta)
} else {
eta <- matrix(rep(0, n.time.total))
}
# Latent occupancy process ----------------------------------------------
psi <- matrix(NA, J, n.time.total)
z <- matrix(NA, J, n.time.total)
for (j in 1:J) {
for (t in 1:n.time.total) {
if (length(psi.RE) > 0) {
psi[j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta) + w.sites[j, t] + beta.star.sites[j, t] +
eta[t])
} else {
psi[j, t] <- logit.inv(X[j, t, ] %*% as.matrix(beta) + w.sites[j, t] + eta[t])
}
z[j, t] <- rbinom(1, 1, psi[j, t])
} # t
} # j
# Data formation --------------------------------------------------------
p <- list()
y <- list()
for (i in 1:n.data) {
K.curr <- n.rep[[i]]
J.curr <- J.obs[[i]]
p[[i]] <- array(NA, dim = c(J.curr, n.time.max[i], n.rep.max[i]))
y[[i]] <- array(NA, dim = c(J.curr, n.time.max[i], n.rep.max[i]))
sites.curr <- sites[[i]]
seasons.curr <- data.seasons[[i]]
X.p.curr <- X.p[[i]]
alpha.curr <- as.matrix(alpha[[i]])
if (length(p.RE) > 0) {
alpha.star.sites.curr <- alpha.star.sites[[i]]
}
for (j in 1:J.curr) {
for (t in time.indx[[i]][[j]]) {
if (length(p.RE) > 0) { # If any detection random effects
if (length(p.RE[[i]]) > 0) { # If any detection random effects in this data set
p[[i]][j, t, rep.indx[[i]][[j]][[t]]] <- logit.inv(X.p.curr[j, t, rep.indx[[i]][[j]][[t]], ] %*%
alpha.curr +
alpha.star.sites.curr[j, t, rep.indx[[i]][[j]][[t]]])
} else { # Detection random effects, but none in this data set
p[[i]][j, t, rep.indx[[i]][[j]][[t]]] <- logit.inv(X.p.curr[j, t, rep.indx[[i]][[j]][[t]], ] %*% alpha.curr)
}
} else { # No detection random effects
p[[i]][j, t, rep.indx[[i]][[j]][[t]]] <- logit.inv(X.p.curr[j, t, rep.indx[[i]][[j]][[t]], ] %*% alpha.curr)
}
y[[i]][j, t, rep.indx[[i]][[j]][[t]]] <- rbinom(K.curr[j, t], 1, p[[i]][j, t, rep.indx[[i]][[j]][[t]]] * z[sites.curr[j], seasons.curr[t]])
}
} # j
} # i
# Split into observed and predicted -----------------------------------
sites.obs <- sort(unique(unlist(sites)))
sites.pred <- (1:J)[!(1:J %in% sites.obs)]
X.obs <- X[sites.obs, , , drop = FALSE]
X.pred <- X[sites.pred, , , drop = FALSE]
if (length(psi.RE) > 0) {
X.re.obs <- X.re[sites.obs, , , drop = FALSE]
X.re.pred <- X.re[sites.pred, , , drop = FALSE]
} else {
X.re.obs <- NA
X.re.pred <- NA
}
z.obs <- z[sites.obs, ]
z.pred <- z[sites.pred, ]
coords.obs <- coords[sites.obs,, drop = FALSE]
coords.pred <- coords[sites.pred,, drop = FALSE]
if (sp) {
w.obs <- w.mat[sites.obs, , drop = FALSE]
w.pred <- w.mat[sites.pred, , drop = FALSE]
} else {
w.obs <- NA
w.pred <- NA
}
psi.obs <- psi[sites.obs, , drop = FALSE]
psi.pred <- psi[sites.pred, , drop = FALSE]
sites.vec <- unlist(sites)
# Need to get index of each site value in only the sites.obs
sites.new <- rep(0, length(sites.vec))
for (i in 1:length(sites.vec)) {
sites.new[i] <- which(sites.obs == sites.vec[i])
}
sites.return <- list()
indx <- 1
for (i in 1:n.data) {
sites.return[[i]] <- sites.new[indx:(indx + J.obs[i] - 1)]
indx <- indx + J.obs[i]
}
list(X.obs = X.obs, X.pred = X.pred, X.p = X.p,
coords.obs = coords.obs, coords.pred = coords.pred,
w.obs = w.obs, w.pred = w.pred,
psi.obs = psi.obs, psi.pred = psi.pred, z.obs = z.obs,
z.pred = z.pred, p = p, y = y, sites = sites.return,
X.re.obs = X.re.obs, X.re.pred = X.re.pred, beta.star = beta.star,
X.p.re = X.p.re, alpha.star = alpha.star, eta = eta
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.