markcorr | R Documentation |
Estimate the marked correlation function of a marked point pattern.
markcorr(X, f = function(m1, m2) { m1 * m2}, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., weights=NULL,
f1=NULL, normalise=TRUE, fargs=NULL, internal=NULL)
X |
The observed point pattern.
An object of class |
f |
Optional. Test function |
r |
Optional. Numeric vector. The values of the argument |
correction |
A character vector containing any selection of the
options |
method |
A character vector indicating the user's choice of
density estimation technique to be used. Options are
|
... |
Arguments passed to the density estimation routine
( |
weights |
Optional. Numeric weights for each data point in |
f1 |
An alternative to |
normalise |
If |
fargs |
Optional. A list of extra arguments to be passed to the function
|
internal |
Do not use this argument. |
By default, this command calculates an estimate of
Stoyan's mark correlation k_{mm}(r)
for the point pattern.
Alternatively if the argument f
or f1
is given, then it
calculates Stoyan's generalised mark correlation k_f(r)
with test function f
.
Theoretical definitions are as follows (see Stoyan and Stoyan (1994, p. 262)):
For a point process X
with numeric marks,
Stoyan's mark correlation function k_{mm}(r)
,
is
k_{mm}(r) = \frac{E_{0u}[M(0) M(u)]}{E[M,M']}
where E_{0u}
denotes the conditional expectation
given that there are points of the process at the locations
0
and u
separated by a distance r
,
and where M(0),M(u)
denote the marks attached to these
two points. On the denominator, M,M'
are random marks
drawn independently from the marginal distribution of marks,
and E
is the usual expectation.
For a multitype point process X
, the mark correlation is
k_{mm}(r) = \frac{P_{0u}[M(0) M(u)]}{P[M = M']}
where P
and P_{0u}
denote the
probability and conditional probability.
The generalised mark correlation function k_f(r)
of a marked point process X
, with test function f
,
is
k_f(r) = \frac{E_{0u}[f(M(0),M(u))]}{E[f(M,M')]}
The test function f
is any function
f(m_1,m_2)
with two arguments which are possible marks of the pattern,
and which returns a nonnegative real value.
Common choices of f
are:
for continuous nonnegative real-valued marks,
f(m_1,m_2) = m_1 m_2
for discrete marks (multitype point patterns),
f(m_1,m_2) = 1(m_1 = m_2)
and for marks taking values in [0,2\pi)
,
f(m_1,m_2) = \sin(m_1 - m_2)
.
Note that k_f(r)
is not a “correlation”
in the usual statistical sense. It can take any
nonnegative real value. The value 1 suggests “lack of correlation”:
if the marks attached to the points of X
are independent
and identically distributed, then
k_f(r) \equiv 1
.
The interpretation of values larger or smaller than 1 depends
on the choice of function f
.
The argument X
must be a point pattern (object of class
"ppp"
) or any data that are acceptable to as.ppp
.
It must be a marked point pattern.
The argument f
determines the function to be applied to
pairs of marks. It has a sensible default, which depends on the
kind of marks in X
. If the marks
are numeric values, then f <- function(m1, m2) { m1 * m2}
computes the product of two marks.
If the marks are a factor (i.e. if X
is a multitype point
pattern) then f <- function(m1, m2) { m1 == m2}
yields
the value 1 when the two marks are equal, and 0 when they are unequal.
These are the conventional definitions for numerical
marks and multitype points respectively.
The argument f
may be specified by the user.
It must be an R function, accepting two arguments m1
and m2
which are vectors of equal length containing mark
values (of the same type as the marks of X
).
(It may also take additional arguments, passed through fargs
).
It must return a vector of numeric
values of the same length as m1
and m2
.
The values must be non-negative, and NA
values are not permitted.
Alternatively the user may specify the argument f1
instead of f
. This indicates that the test function f
should take the form f(u,v)=f_1(u)f_1(v)
where f_1(u)
is given by the argument f1
.
The argument f1
should be an R function with at least one
argument.
(It may also take additional arguments, passed through fargs
).
The argument r
is the vector of values for the
distance r
at which k_f(r)
is estimated.
This algorithm assumes that X
can be treated
as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through
a bounded window.
The window (which is specified in X
as Window(X)
)
may have arbitrary shape.
Biases due to edge effects are
treated in the same manner as in Kest
.
The edge corrections implemented here are
Ripley's isotropic correction (see Ripley, 1988; Ohser, 1983). This is implemented only for rectangular and polygonal windows (not for binary masks).
Translation correction (Ohser, 1983). Implemented for all window geometries, but slow for complex windows.
Note that the estimator assumes the process is stationary (spatially homogeneous).
The numerator and denominator of the mark correlation function (in the expression above) are estimated using density estimation techniques. The user can choose between
"density"
which uses the standard kernel
density estimation routine density
, and
works only for evenly-spaced r
values;
"loess"
which uses the function loess
in the
package modreg;
"sm"
which uses the function sm.density
in the
package sm and is extremely slow;
"smrep"
which uses the function sm.density
in the
package sm and is relatively fast, but may require manual
control of the smoothing parameter hmult
.
If normalise=FALSE
then the algorithm will compute
only the numerator
c_f(r) = E_{0u} f(M(0),M(u))
of the expression for the mark correlation function.
In this case, negative values of f
are permitted.
A function value table (object of class "fv"
)
or a list of function value tables, one for each column of marks.
An object of class "fv"
(see fv.object
)
is essentially a data frame containing numeric columns
r |
the values of the argument |
theo |
the theoretical value of |
together with a column or columns named
"iso"
and/or "trans"
,
according to the selected edge corrections. These columns contain
estimates of the mark correlation function k_f(r)
obtained by the edge corrections named.
.
Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons.
Mark variogram markvario
for numeric marks.
Mark connection function markconnect
and
multitype K-functions Kcross
, Kdot
for factor-valued marks.
Mark cross-correlation function markcrosscorr
for point patterns with several columns of marks.
Kmark
to estimate a cumulative function
related to the mark correlation function.
# CONTINUOUS-VALUED MARKS:
# (1) Spruces
# marks represent tree diameter
# mark correlation function
ms <- markcorr(spruces)
plot(ms)
# (2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- markcorr(X)
plot(Xc)
# MULTITYPE DATA:
# Hughes' amacrine data
# Cells marked as 'on'/'off'
X <- if(interactive()) amacrine else amacrine[c(FALSE, TRUE)]
# (3) Kernel density estimate with Epanecnikov kernel
# (as proposed by Stoyan & Stoyan)
M <- markcorr(X, function(m1,m2) {m1==m2},
correction="translate", method="density",
kernel="epanechnikov")
# Note: kernel="epanechnikov" comes from help(density)
# (4) Same again with explicit control over bandwidth
M <- markcorr(X,
correction="translate", method="density",
kernel="epanechnikov", bw=0.02)
# see help(density) for correct interpretation of 'bw'
# weighted mark correlation
X <- if(interactive()) betacells else betacells[c(TRUE,FALSE)]
Y <- subset(X, select=type)
a <- marks(X)$area
v <- markcorr(Y, weights=a)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.