R/lineardisc.R

Defines functions makeLinnetTolerance default.linnet.tolerance countends lineardiscEngine lineardisclength lineardisc

Documented in countends default.linnet.tolerance lineardisc lineardiscEngine lineardisclength makeLinnetTolerance

#
#
#   lineardisc.R
#
#   $Revision: 1.37 $ $Date: 2022/10/23 02:50:11 $
#
#   Compute the disc of radius r in a linear network
#
#   
lineardisc <- function(L, x=locator(1), r,
                       plotit=TRUE, 
                       cols=c("blue", "red", "green"),
                       add=TRUE) {
  #' L is the linear network (object of class "linnet")
  #' x is the centre point of the disc
  #' r is the radius of the disc
  if(missing(x)) x <- NULL
  d <- lineardiscEngine(L, x, r, want="disc")
  if(plotit) {
    if(!add || dev.cur() == 1) 
      plot(L, main="")
    plot(d$lines,           add=TRUE, col=cols[2L], lwd=2)
    plot(d$endpoints,       add=TRUE, col=cols[3L], pch=16)
    points(d$x[c("x","y")], col=cols[1L], pch=16)
  }
  d <- d[c("lines", "endpoints")]
  return(d)
}

lineardisclength <- function(L, x=locator(1), r) {
  if(missing(x)) x <- NULL
  d <- lineardiscEngine(L, x, r, want="length")
  return(d)
}

lineardiscEngine <- function(L, x=NULL, r,
                             want = c("disc", "length")) {
  # L is the linear network (object of class "linnet")
  # x is the centre point of the disc
  # r is the radius of the disc
  stopifnot(inherits(L, "linnet"))
  check.1.real(r)
  if(L$sparse) {
    message("Converting linear network to non-sparse representation..")
    L <- as.linnet(L, sparse=FALSE)
    message("Done.")
  }
  lines <- L$lines
  vertices <- L$vertices
  lenths <- lengths_psp(lines)
  win <- L$window
  marx <- marks(lines)
  ##
  if(is.null(x)) 
    x <- clickppp(1, win, add=TRUE)
  if(is.lpp(x) && identical(L, domain(x))) {
    ## extract local coordinates
    stopifnot(npoints(x) == 1)
    coo <- coords(x)
    startsegment <- coo$seg
    startfraction <- coo$tp
  } else {
    ## interpret x as 2D location
    x <- as.ppp(x, win)
    stopifnot(npoints(x) == 1)
    ## project x to nearest segment
    pro <- project2segment(x, lines)
    ## which segment?
    startsegment <- pro$mapXY
    ## parametric position of x along this segment
    startfraction <- pro$tp
  }
  ## vertices at each end of this segment
  A <- L$from[startsegment]
  B <- L$to[startsegment]
  ## distances from x to  A and B
  startlength <- lenths[startsegment]
  dxA <- startfraction * startlength
  dxB <- (1-startfraction) * startlength
  # is r large enough to reach both A and B?
  startfilled <- (max(dxA, dxB) <= r)
  # compute vector of shortest path distances from x to each vertex j,
  # going through A:
  dxAv <- dxA + L$dpath[A,]
  # going through B:
  dxBv <- dxB + L$dpath[B,]
  # going either through A or through B:
  dxv <- pmin.int(dxAv, dxBv)
  # Thus dxv[j] is the shortest path distance from x to vertex j.
  #
  # Determine which vertices are inside the disc of radius r
  covered <- (dxv <= r)
  # Thus covered[j] is TRUE if the j-th vertex is inside the disc.
  #
  # Determine which line segments are completely inside the disc
  #
  from <- L$from
  to   <- L$to
  # ( a line segment is inside the disc if the shortest distance
  #   from x to one of its endpoints, plus the length of the segment,
  #   is less than r ....
  allinside <- (dxv[from] + lenths <= r) | (dxv[to] + lenths <= r)
  #   ... or alternatively, if the sum of the
  #   two residual distances exceeds the length of the segment )
  residfrom <- pmax.int(0, r - dxv[from])
  residto   <- pmax.int(0, r - dxv[to])
  allinside <- allinside | (residfrom + residto >= lenths)
  # start segment is special
  allinside[startsegment] <- startfilled
  # Thus allinside[k] is TRUE if the k-th segment is completely inside the disc

  switch(want,
         length = {
           #' Start computing length of disc
           #' Compute sum of segments that lie entirely inside the disc
           disclength <- sum(lenths[allinside])
         },
         disc = {
           #' Start assembling disc
           #' Collect all these segments
           disclines <- lines[allinside]
         })
  #
  # Determine which line segments cross the boundary of the disc
  boundary <- (covered[from] | covered[to]) & !allinside
  # For each of these, calculate the remaining distance at each end
  resid.from <- ifelseXB(boundary, pmax.int(r - dxv[from], 0), 0)
  resid.to   <- ifelseXB(boundary, pmax.int(r - dxv[to],   0), 0)

  switch(want,
         length = {
           #' add these residual lengths to the total disc length
           disclength <- disclength + sum(resid.from) + sum(resid.to)
         },
         disc = {
           #' Where the remaining distance is nonzero,
           #' create fragmentary segments and endpoints
           okfrom <- (resid.from > 0)
           okfrom[startsegment] <- FALSE
           if(any(okfrom)) {
             v0 <- vertices[from[okfrom]]
             v1 <- vertices[to[okfrom]]
             tp <- (resid.from/lenths)[okfrom]
             vfrom <- ppp((1-tp)*v0$x + tp*v1$x,
             (1-tp)*v0$y + tp*v1$y,
             window=win)
             extralinesfrom <- as.psp(from=v0, to=vfrom)
             if(!is.null(marx)) marks(extralinesfrom) <- marx %msub% okfrom
           } else vfrom <- extralinesfrom <- NULL
           #'
           okto <- (resid.to > 0)
           okto[startsegment] <- FALSE
           if(any(okto)) {
             v0 <- vertices[to[okto]]
             v1 <- vertices[from[okto]]
             tp <- (resid.to/lenths)[okto]
             vto <- ppp((1-tp)*v0$x + tp*v1$x,
             (1-tp)*v0$y + tp*v1$y,
             window=win)
             extralinesto <- as.psp(from=v0, to=vto)
             if(!is.null(marx)) marks(extralinesto) <- marx %msub% okto
           } else vto <- extralinesto <- NULL
         }
         )
           
  #
  if(startfilled) {
    startline <- startends <- NULL
  } else {
    ## deal with special case where start segment is not fully covered
    switch(want,
           length = {
             ## add length of disc inside start segment
             disclength <- disclength + min(r, dxA) + min(r, dxB)
           },
           disc = {
             ## construct the part of disc that is inside the start segment
             rfrac <- r/lenths[startsegment]
             tleft <- pmax.int(startfraction-rfrac, 0)
             tright <- pmin.int(startfraction+rfrac, 1)
             vA <- vertices[A]
             vB <- vertices[B]
             vleft <- ppp((1-tleft) * vA$x + tleft * vB$x,
                          (1-tleft) * vA$y + tleft * vB$y,
                          window=win)
             vright <- ppp((1-tright) * vA$x + tright * vB$x,
                           (1-tright) * vA$y + tright * vB$y,
                           window=win)
             startline <- as.psp(from=vleft, to=vright)
             if(!is.null(marx)) marks(startline) <- marx %msub% startsegment
             startends <- superimpose(if(!covered[A]) vleft else NULL,
                                      if(!covered[B]) vright else NULL)
           })
  }

  ## return disc length
  if(want == "length") return(disclength)
  #
  # combine all lines
  disclines <- superimpose(disclines,
                           extralinesfrom, extralinesto, startline,
                           W=win, check=FALSE)
  # combine all disc endpoints
  discends <- superimpose(vfrom, vto, vertices[dxv == r], startends,
                          W=win, check=FALSE)
  #
  return(list(x=coords(x), lines=disclines, endpoints=discends))
}

countends <- function(L, x=locator(1), r, toler=NULL, internal=list()) {
  # L is the linear network (object of class "linnet")
  # x is the centre point of the disc
  # r is the radius of the disc
  #
  stopifnot(inherits(L, "linnet"))
  sparse <- L$sparse %orifnull% is.null(L$dpath)
  if(sparse)
    stop(paste("countends() does not support linear networks",
               "that are stored in sparse matrix format.",
               "Please convert the data using as.linnet(sparse=FALSE)"),
         call.=FALSE)
  # get x
  if(missing(x))
    x <- clickppp(1, Window(L), add=TRUE)
  if(!inherits(x, "lpp"))
    x <- as.lpp(x, L=L)
  np <- npoints(x)
  
  if(length(r) != np)
    stop("Length of vector r does not match number of points in x")
  
  ## determine whether network is connected
  iscon <- internal$is.connected %orifnull% is.connected(L)
  if(!iscon) {
    #' disconnected network - split into components
    result <- numeric(np)
    lab <- internal$connected.labels %orifnull% connected(L, what="labels")
    subsets <- split(seq_len(nvertices(L)), factor(lab))
    for(subi in subsets) {
      xi <- thinNetwork(x, retainvertices=subi)
      witch <- which(attr(xi, "retainpoints"))
      ok <- is.finite(r[witch])
      witchok <- witch[ok]
      result[witchok] <-
        countends(domain(xi), xi[ok], r[witchok], toler=toler,
                  internal=list(is.connected=TRUE))      
    }
    return(result)
  }
  lines <- L$lines
  vertices <- L$vertices
  lenths <- lengths_psp(lines)
  dpath <- L$dpath
  nv <- vertices$n
  ns <- lines$n
  #
  if(!spatstat.options("Ccountends")) {
    #' interpreted code
    result <- integer(np)
    for(i in seq_len(np)) 
      result[i] <- npoints(lineardisc(L, x[i], r[i], plotit=FALSE)$endpoints)
    return(result)
  }
  # extract coordinates
  coo <- coords(x)
  #' which segment
  startsegment <- coo$seg 
  # parametric position of x along this segment
  startfraction <- coo$tp
  # convert indices to C 
  seg0 <- startsegment - 1L
  from0 <- L$from - 1L
  to0   <- L$to - 1L
  # determine numerical tolerance
  if(is.null(toler)) {
    toler <- default.linnet.tolerance(L)
  } else {
    check.1.real(toler)
    stopifnot(toler > 0)
  }
  zz <- .C(SL_Ccountends,
           np = as.integer(np),
           f = as.double(startfraction),
           seg = as.integer(seg0),
           r = as.double(r), 
           nv = as.integer(nv), 
           xv = as.double(vertices$x),
           yv = as.double(vertices$y),  
           ns = as.integer(ns),
           from = as.integer(from0),
           to = as.integer(to0), 
           dpath = as.double(dpath),
           lengths = as.double(lenths),
           toler=as.double(toler),
           nendpoints = as.integer(integer(np)),
           PACKAGE="spatstat.linnet")
  zz$nendpoints
}

default.linnet.tolerance <- function(L) {
  # L could be a linnet or psp
  if(!is.null(toler <- L$toler)) return(toler)
  len2 <- lengths_psp(as.psp(L), squared=TRUE)
  len2pos <- len2[len2 > 0]
  toler <- if(length(len2pos) == 0) 0 else (0.001 * sqrt(min(len2pos)))
  toler <- makeLinnetTolerance(toler)
  return(toler)
}

makeLinnetTolerance <- function(toler) {
  max(sqrt(.Machine$double.xmin),
      toler[is.finite(toler)], na.rm=TRUE)
}




  

Try the spatstat.linnet package in your browser

Any scripts or data that you put into this service are public.

spatstat.linnet documentation built on Sept. 20, 2024, 5:06 p.m.