mstree | R Documentation |
The minimal spanning tree is a connected graph with n nodes and n-1 edges. This is a smaller class of possible partitions of a graph by pruning edges with high dissimilarity. If one edge is removed, the graph is partioned in two unconnected subgraphs. This function implements the algorithm due to Prim (1987).
mstree(nbw, ini = NULL)
nbw |
An object of |
ini |
The initial node in the minimal spanning tree. |
The minimum spanning tree algorithm.
Input a connected graph.
Begin a empty set of nodes.
Add an arbitrary note in this set.
While are nodes not in the set, find a minimum cost edge connecting a node in the set and a node out of the set and add this node in the set.
The set of edges is a minimum spanning tree.
A matrix with n-1 rows and tree columns. Each row is two nodes and the cost, i. e. the edge and it cost.
Renato M. Assuncao and Elias T. Krainski
R. C. Prim (1957) Shortest connection networks and some generalisations. In: Bell System Technical Journal, 36, pp. 1389-1401
### loading data
(GDAL37 <- as.numeric_version(unname(sf_extSoftVersion()["GDAL"])) >= "3.7.0")
file <- "etc/shapes/bhicv.gpkg.zip"
zipfile <- system.file(file, package="spdep")
if (GDAL37) {
bh <- st_read(zipfile)
} else {
td <- tempdir()
bn <- sub(".zip", "", basename(file), fixed=TRUE)
target <- unzip(zipfile, files=bn, exdir=td)
bh <- st_read(target)
}
### data padronized
dpad <- data.frame(scale(as.data.frame(bh)[,5:8]))
### neighboorhod list
bh.nb <- poly2nb(bh)
### calculing costs
lcosts <- nbcosts(bh.nb, dpad)
### making listw
nb.w <- nb2listw(bh.nb, lcosts, style="B")
### find a minimum spanning tree
system.time(mst.bh <- mstree(nb.w,5))
dim(mst.bh)
head(mst.bh)
tail(mst.bh)
### the mstree plot
par(mar=c(0,0,0,0))
plot(st_geometry(bh), border=gray(.5))
plot(mst.bh, st_coordinates(st_centroid(bh)), col=2,
cex.lab=.6, cex.circles=0.035, fg="blue", add=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.