Nothing
get_model_stats_splm <- function(cov_est_object, data_object, estmethod) {
# making a covariance matrix list
cov_matrix_list <- get_cov_matrix_list(
cov_est_object$spcov_params_val,
cov_est_object$dist_matrix_list,
cov_est_object$randcov_params_val,
data_object$randcov_list,
data_object$partition_list,
diagtol = data_object$diagtol
)
# eigen products
if (data_object$parallel) {
cluster_list <- lapply(seq_along(cov_matrix_list), function(l) {
cluster_list_element <- list(
c = cov_matrix_list[[l]],
x = data_object$X_list[[l]],
y = data_object$y_list[[l]],
o = data_object$ones_list[[l]]
)
})
eigenprods_list <- parallel::parLapply(data_object$cl, cluster_list, get_eigenprods_parallel)
names(eigenprods_list) <- names(cov_matrix_list)
} else {
eigenprods_list <- mapply(
c = cov_matrix_list, x = data_object$X_list, y = data_object$y_list, o = data_object$ones_list,
function(c, x, y, o) get_eigenprods(c, x, y, o),
SIMPLIFY = FALSE
)
}
# get cov beta hat (Xt Sig^-1 X)^-1 and beta hat (Xt Sig^-1 X)^-1 Xt Sig^-1 y
invcov_betahat_list <- lapply(eigenprods_list, function(x) crossprod(x$SqrtSigInv_X, x$SqrtSigInv_X))
invcov_betahat_sum <- Reduce("+", invcov_betahat_list)
cov_betahat_noadjust <- chol2inv(chol(forceSymmetric(invcov_betahat_sum)))
cov_betahat_noadjust_list <- rep(list(cov_betahat_noadjust), times = length(invcov_betahat_list))
Xt_SigInv_y_list <- lapply(eigenprods_list, function(x) crossprod(x$SqrtSigInv_X, x$SqrtSigInv_y))
betahat_list <- mapply(
l = cov_betahat_noadjust_list, r = Xt_SigInv_y_list,
function(l, r) l %*% r,
SIMPLIFY = FALSE
)
betahat <- as.numeric(cov_betahat_noadjust %*%
Reduce("+", Xt_SigInv_y_list))
names(betahat) <- colnames(data_object$X_list[[1]])
cov_betahat <- cov_betahat_adjust(
invcov_betahat_list,
betahat_list, betahat,
eigenprods_list, data_object,
cov_est_object$spcov_params_val,
cov_est_object$randcov_params_val,
cov_betahat_noadjust, data_object$var_adjust
)
cov_betahat <- as.matrix(cov_betahat)
rownames(cov_betahat) <- colnames(data_object$X_list[[1]])
colnames(cov_betahat) <- colnames(data_object$X_list[[1]])
# return coefficients
coefficients <- get_coefficients(betahat, cov_est_object$spcov_params_val, cov_est_object$randcov_params_val)
# return fitted
fitted <- get_fitted_splm(
betahat, cov_est_object$spcov_params_val, data_object,
eigenprods_list, cov_est_object$dist_matrix_list,
cov_est_object$randcov_params_val
)
# return hat values
hatvalues <- as.numeric(unlist(lapply(eigenprods_list, function(x) get_hatvalues(cov_betahat_noadjust, x$SqrtSigInv_X))))
# return residuals
residuals <- get_residuals_splm(betahat, data_object, eigenprods_list, hatvalues)
# return cooks distance
cooks_distance <- get_cooks_distance(residuals, hatvalues, data_object$p)
# reorder relevant quantities
## fitted
fitted$response <- fitted$response[order(data_object$order)]
names(fitted$response) <- data_object$observed_index
fitted$spcov$de <- fitted$spcov$de[order(data_object$order)]
names(fitted$spcov$de) <- data_object$observed_index
fitted$spcov$ie <- fitted$spcov$ie[order(data_object$order)]
names(fitted$spcov$ie) <- data_object$observed_index
hatvalues <- hatvalues[order(data_object$order)]
names(hatvalues) <- data_object$observed_index
residuals$response <- residuals$response[order(data_object$order)]
names(residuals$response) <- data_object$observed_index
residuals$pearson <- residuals$pearson[order(data_object$order)]
names(residuals$pearson) <- data_object$observed_index
residuals$standardized <- residuals$standardized[order(data_object$order)]
names(residuals$standardized) <- data_object$observed_index
cooks_distance <- cooks_distance[order(data_object$order)]
names(cooks_distance) <- data_object$observed_index
# return variance covariance matrices
vcov <- get_vcov(cov_betahat)
# return deviance
deviance <- as.numeric(crossprod(residuals$pearson, residuals$pearson))
# generalized r squared
## generalized r squared (1 - deviance full / deviance reduced (mean only))
## for normal data is 1 - (y - x beta)t Sigma inv (y - x beta) / (y - muhat)t Sigma inv (y - muhat)
## where muhat = (1t Sigma inv 1) inv 1t Sigma inv y
## create ones vector
## muhat
SqrtSigInv_ones <- as.numeric(do.call("rbind", lapply(eigenprods_list, function(x) x$SqrtSigInv_ones)))
cov_muhat <- 1 / crossprod(SqrtSigInv_ones, SqrtSigInv_ones)
SqrtSigInv_y <- do.call("rbind", lapply(eigenprods_list, function(x) x$SqrtSigInv_y))
muhat <- as.vector(cov_muhat * crossprod(SqrtSigInv_ones, SqrtSigInv_y))
SqrtSigInv_rmuhat <- as.numeric(do.call("rbind", lapply(eigenprods_list, function(x) x$SqrtSigInv_y - x$SqrtSigInv_ones * muhat)))
### reduced model
deviance_null <- as.numeric(crossprod(SqrtSigInv_rmuhat, SqrtSigInv_rmuhat))
pseudoR2 <- as.numeric(1 - deviance / deviance_null)
# set null model R2 equal to zero (no covariates)
if (length(labels(terms(data_object$formula))) == 0) {
pseudoR2 <- 0
}
## empirical semivariogram
if (estmethod == "sv-wls") {
esv_val <- cov_est_object$esv
} else {
esv_val <- NULL
}
# npar
p_theta_spcov <- length(cov_est_object$is_known$spcov) - sum(cov_est_object$is_known$spcov)
p_theta_randcov <- length(cov_est_object$is_known$randcov) - sum(cov_est_object$is_known$randcov)
npar <- p_theta_spcov + p_theta_randcov
list(
coefficients = coefficients,
fitted = fitted,
hatvalues = hatvalues,
residuals = residuals,
cooks_distance = cooks_distance,
vcov = vcov,
deviance = deviance,
pseudoR2 = pseudoR2,
npar = npar
)
}
get_model_stats_splm_iid <- function(cov_est_object, data_object, estmethod) {
X <- do.call("rbind", data_object$X_list)
y <- do.call("rbind", data_object$y_list)
qr_val <- qr(X)
R_val <- qr.R(qr_val)
s2 <- cov_est_object$spcov_params_val[["ie"]]
cor_betahat <- chol2inv(chol(crossprod(R_val, R_val)))
cov_betahat <- s2 * cor_betahat
betahat <- as.numeric(backsolve(R_val, qr.qty(qr_val, y)))
names(betahat) <- colnames(data_object$X_list[[1]])
cov_betahat <- as.matrix(cov_betahat)
rownames(cov_betahat) <- colnames(data_object$X_list[[1]])
colnames(cov_betahat) <- colnames(data_object$X_list[[1]])
fitted <- X %*% betahat
resids <- y - fitted
# return coefficients
coefficients <- get_coefficients(betahat, cov_est_object$spcov_params_val, cov_est_object$randcov_params_val)
# return fitted
fitted <- list(
response = as.numeric(fitted),
spcov = list(de = as.numeric(rep(0, length(y))), ie = as.numeric(resids)),
randcov = NULL
)
# return hat values
hatvalues <- diag(X %*% tcrossprod(cor_betahat, X))
# return residuals
residuals <- list(
response = as.numeric(resids),
pearson = 1 / sqrt(s2) * resids
)
residuals$standardized <- residuals$pearson / sqrt(1 - hatvalues)
# return cooks distance
cooks_distance <- get_cooks_distance(residuals, hatvalues, data_object$p)
# reorder relevant quantities
## fitted
fitted$response <- fitted$response[order(data_object$order)]
names(fitted$response) <- data_object$observed_index
fitted$spcov$de <- fitted$spcov$de[order(data_object$order)]
names(fitted$spcov$de) <- data_object$observed_index
fitted$spcov$ie <- fitted$spcov$ie[order(data_object$order)]
names(fitted$spcov$ie) <- data_object$observed_index
hatvalues <- hatvalues[order(data_object$order)]
names(hatvalues) <- data_object$observed_index
residuals$response <- residuals$response[order(data_object$order)]
names(residuals$response) <- data_object$observed_index
residuals$pearson <- residuals$pearson[order(data_object$order)]
names(residuals$pearson) <- data_object$observed_index
residuals$standardized <- residuals$standardized[order(data_object$order)]
names(residuals$standardized) <- data_object$observed_index
cooks_distance <- cooks_distance[order(data_object$order)]
names(cooks_distance) <- data_object$observed_index
# return variance covariance matrices
vcov <- get_vcov(cov_betahat)
# return deviance
deviance <- as.numeric(crossprod(residuals$pearson, residuals$pearson))
muhat <- mean(y)
pearson_null <- 1 / sqrt(s2) * (y - muhat)
deviance_null <- as.numeric(crossprod(pearson_null, pearson_null))
pseudoR2 <- as.numeric(1 - deviance / deviance_null)
# set null model R2 equal to zero (no covariates)
if (length(labels(terms(data_object$formula))) == 0) {
pseudoR2 <- 0
}
## empirical semivariogram
if (estmethod == "sv-wls") {
esv_val <- cov_est_object$esv
} else {
esv_val <- NULL
}
# npar
p_theta_spcov <- length(cov_est_object$is_known$spcov) - sum(cov_est_object$is_known$spcov)
p_theta_randcov <- length(cov_est_object$is_known$randcov) - sum(cov_est_object$is_known$randcov)
npar <- p_theta_spcov + p_theta_randcov
list(
coefficients = coefficients,
fitted = fitted,
hatvalues = hatvalues,
residuals = residuals,
cooks_distance = cooks_distance,
vcov = vcov,
deviance = deviance,
pseudoR2 = pseudoR2,
npar = npar
)
}
get_model_stats_spautor <- function(cov_est_object, data_object, estmethod) {
# cov_est_object$randcov_params_val is NULL if not added so won't affect downstream calculations
# when random effects are not used
cov_matrix_val <- cov_matrix(
cov_est_object$spcov_params_val, cov_est_object$dist_matrix_list,
cov_est_object$randcov_params_val, data_object$randcov_Zs, data_object$partition_matrix, data_object$M
)
cov_matrix_obs_val <- cov_matrix_val[data_object$observed_index, data_object$observed_index, drop = FALSE]
# getting cholesky products
eigenprods <- get_eigenprods(cov_matrix_obs_val, data_object$X, data_object$y, data_object$ones)
# get cov beta hat (Xt Sig^-1 X)^-1
cov_betahat <- as.matrix(chol2inv(chol(forceSymmetric(crossprod(eigenprods$SqrtSigInv_X, eigenprods$SqrtSigInv_X)))))
rownames(cov_betahat) <- colnames(data_object$X)
colnames(cov_betahat) <- colnames(data_object$X)
# get betahat (Xt Sig^-1 X)^-1 Xt Sig^-1 y
betahat <- cov_betahat %*% crossprod(eigenprods$SqrtSigInv_X, eigenprods$SqrtSigInv_y)
betahat <- as.numeric(betahat)
names(betahat) <- colnames(data_object$X)
# return coefficients
coefficients <- get_coefficients(betahat, cov_est_object$spcov_params_val, cov_est_object$randcov_params_val)
# return fitted
fitted <- get_fitted_spautor(
betahat, cov_est_object$spcov_params_val, data_object, eigenprods,
cov_est_object$randcov_params_val
)
# return hat values
hatvalues <- get_hatvalues(cov_betahat, eigenprods$SqrtSigInv_X)
# return residuals
residuals <- get_residuals_spautor(betahat, data_object$X, data_object$y, eigenprods, hatvalues)
# return cooks distance
cooks_distance <- get_cooks_distance(residuals, hatvalues, data_object$p)
# give names
names(fitted$response) <- data_object$observed_index
names(fitted$spcov$de) <- data_object$observed_index
names(fitted$spcov$ie) <- data_object$observed_index
names(hatvalues) <- data_object$observed_index
names(residuals$response) <- data_object$observed_index
names(residuals$pearson) <- data_object$observed_index
names(residuals$standardized) <- data_object$observed_index
names(cooks_distance) <- data_object$observed_index
# return variance covariance matrices
vcov <- get_vcov(cov_betahat)
# return deviance
deviance <- as.numeric(crossprod(residuals$pearson, residuals$pearson))
# generalized r squared
## generalized r squared (1 - deviance full / deviance reduced (mean only))
## for normal data is 1 - (y - x beta)t Sigma inv (y - x beta) / (y - muhat)t Sigma inv (y - muhat)
## where muhat = (1t Sigma inv 1) inv 1t Sigma inv y
## create ones vector
## muhat
SqrtSigInv_ones <- eigenprods$SqrtSigInv_ones
cov_muhat <- 1 / crossprod(SqrtSigInv_ones, SqrtSigInv_ones)
muhat <- as.vector(cov_muhat * crossprod(SqrtSigInv_ones, eigenprods$SqrtSigInv_y))
SqrtSigInv_rmuhat <- eigenprods$SqrtSigInv_y - eigenprods$SqrtSigInv_ones * muhat
### reduced model
deviance_null <- as.numeric(crossprod(SqrtSigInv_rmuhat, SqrtSigInv_rmuhat))
pseudoR2 <- as.numeric(1 - deviance / deviance_null)
# set null model R2 equal to zero (no covariates)
if (length(labels(terms(data_object$formula))) == 0) {
pseudoR2 <- 0
}
# npar
p_theta_spcov <- length(cov_est_object$is_known$spcov) - sum(cov_est_object$is_known$spcov)
p_theta_randcov <- length(cov_est_object$is_known$randcov) - sum(cov_est_object$is_known$randcov)
npar <- p_theta_spcov + p_theta_randcov
list(
coefficients = coefficients,
fitted = fitted,
hatvalues = hatvalues,
residuals = residuals,
cooks_distance = cooks_distance,
vcov = vcov,
deviance = deviance,
pseudoR2 = pseudoR2,
npar = npar
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.