Description Usage Arguments Details Value Author(s) References See Also Examples
Assess the performance of a gene signature derived from a single or merged data set by ten iterations of cross validation.
1 2 | iter.crossval(data, surv, censor, ngroup = 10, plot.roc = 0, method = "none",
zscore = 0, gn.nb = 100, gn.nb.display = 0)
|
data |
Matrix of gene expression data. |
surv |
Vector of survival time. |
censor |
Vector of censoring status. 1 = event occurred, 0 = censored. |
ngroup |
An integer specifying the number of cross-validation folds. |
plot.roc |
An integer specifying whether the ROC curves should be plotted or not (1 or 0). |
method |
A character string specifying the feature selection method: "none" for top-ranking or one of the adjusting methods specified by the p.adjust function |
zscore |
An integer specifying whether Z-score normalization should be applied or not (1 or 0). 1 if |
gn.nb |
An integer specifying the number of genes to select for gene signature. |
gn.nb.display |
An integer specifying the number of selected genes to display. |
The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method
!= "none".
If the user wants to apply his own feature selection method, he should define his function with the same number of parameters as the defined feature selection function of the package, i.e. featureselection
.
ROC curves are the plots of the mean of true positives (sensitivity) and the mean of false positives (1-specificity) over ngroup
folds of cross-validation.
Mean of AUC +/- standard deviation of AUC, geometric mean of HR(CI).
Haleh Yasrebi
Yasrebi H, Sperisen P, Praz V, Bucher P, 2009 Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?. PLoS ONE 4(10): e7431. doi:10.1371/journal.pone.0007431.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | ## Single data set
data(gse4335)
data(gse4335pheno)
#And run the following script:
#iter.crossval(gse4335, gse4335pheno[,6], gse4335pheno[,5])
## To observe the frequency of the CYB5D1 gene selection, run the following script:
#iter.crossval(gse4335, gse4335pheno[,6], gse4335pheno[,5], gn.nb =1, gn.nb.display = 1)
## Merged data set
data(gse4335)
data(gse4335pheno)
data(gse1992)
data(gse1992pheno)
common.gene = intersect(colnames(gse4335), colnames(gse1992))
data = rbind(gse4335[,common.gene], gse1992[,common.gene])
surv = c(gse4335pheno[,6],gse1992pheno[,19])
censor = c(gse4335pheno[,5],gse1992pheno[,18])
#And run the following script:
#iter.crossval(data, surv,censor, zscore=1)
## The function is currently defined as
function(data,surv,censor,ngroup=10,plot.roc=0,method="none",zscore=0,gn.nb=100,gn.nb.display=0){
require(survival)
require(survivalROC)
res = NULL
file.name=deparse(substitute(data))
if (plot.roc)
init.plot(file.name)
data =data[!is.na(surv),]
censor= censor[!is.na(surv)]
surv= surv[!is.na(surv)]
cat ("Iteration\tAUC\tHR(CI)\t\tP-val\n")
for (i in 1:ngroup){
new.lst = cross.val.surv(data, surv, censor,ngroup, i, method, zscore,
gn.nb,gn.nb.display,plot.roc,p.list)
res = rbind (res, new.lst)
}
if(ngroup != length(surv)){
cat ("Avg AUC+/-SD\tHR(CI)\n")
if (plot.roc)
legend (0.55,0.1, legend = paste("AUC+/-SD =", sprintf("%.2f",
as.numeric(mean(res[,1],na.rm = T))), "+/-", sprintf("%.2f",
sd (res[,1],na.rm = T)), sep = " "),bty = "n")
cat (sprintf("%.2f",as.numeric(mean(res[,1], na.rm = T))), "+/-",
sprintf("%.2f",sd (res[,1],na.rm = T)), "\t", gm(res[,2]),
"(", sprintf("%.2f",ci.gm(res[,2])[1]), "-", sprintf("%.2f",
ci.gm(res[,2])[2]), ")\n", sep = "")
}
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.