Description Usage Arguments Details Value Author(s) Examples
Meta analysis of microarray gene expression data for survival prediction.
1 | meta.main(geno.files, surv.data, method = "none")
|
geno.files |
A vector of character strings containing the names of expression files. |
surv.data |
The list of two vectors, survival time and censoring status. In the censoring status vector, 1 = event occurred, 0 = censored. |
method |
A character string specifying the feature selection method: "none" for top-100 ranking or one of the adjusting methods specified by the p.adjust function |
In top-ranking, genes are selected based on univariate Cox P-value ranking using the coxph function in the R survival package. In this feature selection method, the genes are ranked based on their likelihood ratio P-value and the top-100 ranked genes with the smallest P-values are retained as the gene signature.
The p.adjust function in the R stats package is used and all adjusted p-values not greater than 0.05 are retained if method
!= "none".
AUC, HR(CI) and p-value.
Haleh Yasrebi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | require(survJamda.data)
data(gse4335)
data(gse3143)
data(gse1992)
data(gse4335pheno)
data(gse3143pheno)
data(gse1992pheno)
geno.files = c("gse4335", "gse3143","gse1992")
surv.data = list(c(gse4335pheno[,6],gse3143pheno[,4],gse1992pheno[,19]),
c(gse4335pheno[,5],gse3143pheno[,3],gse1992pheno[,18]))
#The following script might take some time
#meta.main(geno.files, surv.data)
## The function is currently defined as
function(geno.files,surv.data, method = "none")
{
options(warn=-1)
curr_set = 1:length(geno.files)
for (y in curr_set){
x = setdiff(curr_set, y)
data.set.meta (x, y, geno.files,surv.data, method)
}
}
|
Loading required package: survival
Loading required package: survivalROC
Loading required package: ecodist
Loading required package: survcomp
Loading required package: prodlim
Loading required package: survJamda.data
function (geno.files, surv.data, method = "none")
{
options(warn = -1)
curr_set = 1:length(geno.files)
for (y in curr_set) {
x = setdiff(curr_set, y)
data.set.meta(x, y, geno.files, surv.data, method)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.