Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena

Vignettes

- algo.glrnb: Count data regression charts using the generalized likelihood ratio statistic
- Getting started with outbreak detection
- hhh4: An endemic-epidemic modelling framework for infectious disease counts
- hhh4 (spatio-temporal): Endemic-epidemic modeling of areal count time series
- Monitoring count time series in R: Aberration detection in public health surveillance
- twinSIR: Individual-level epidemic modeling for a fixed population with known distances
- twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns

640

151

175

**abattoir:**Abattoir Data**addFormattedXAxis:**Formatted Time Axis for '"sts"' Objects**addSeason2formula:**Add Harmonics to an Existing Formula**aggregate.disProg:**Aggregate a 'disProg' Object**algo.bayes:**The Bayes System**algo.call:**Query Transmission to Specified Surveillance Algorithm**algo.cdc:**The CDC Algorithm**algo.compare:**Comparison of Specified Surveillance Systems using Quality...**algo.cusum:**CUSUM method**algo.farrington:**Surveillance for Count Time Series Using the Classic...**algo.farrington.assign.weights:**Assign weights to base counts**algo.farrington.fitGLM:**Fit Poisson GLM of the Farrington procedure for a single time...**algo.farrington.threshold:**Compute prediction interval for a new observation**algo.glrnb:**Count Data Regression Charts**algo.hmm:**Hidden Markov Model (HMM) method**algo.outbreakP:**Semiparametric surveillance of outbreaks**algo.quality:**Computation of Quality Values for a Surveillance System...**algo.rki:**The system used at the RKI**algo.rogerson:**Modified CUSUM method as proposed by Rogerson and Yamada...**algo.summary:**Summary Table Generation for Several Disease Chains**algo.twins:**Fit a Two-Component Epidemic Model using MCMC**all.equal:**Test if Two Model Fits are (Nearly) Equal**animate:**Generic animation of spatio-temporal objects**anscombe.residuals:**Compute Anscombe Residuals**arlCusum:**Calculation of Average Run Length for discrete CUSUM schemes**backprojNP:**Non-parametric back-projection of incidence cases to exposure...**bestCombination:**Partition of a number into two factors**boda:**Bayesian Outbreak Detection Algorithm (BODA)**bodaDelay:**Bayesian Outbreak Detection in the Presence of Reporting...**calibration:**Calibration Tests for Poisson or Negative Binomial...**campyDE:**Campylobacteriosis and Absolute Humidity in Germany 2002-2011**categoricalCUSUM:**CUSUM detector for time-varying categorical time series**checkResidualProcess:**Check the residual process of a fitted 'twinSIR' or...**clapply:**Conditional 'lapply'**coeflist:**List Coefficients by Model Component**create.disProg:**Creating an object of class 'disProg' (DEPRECATED)**deleval:**Surgical Failures Data**discpoly:**Polygonal Approximation of a Disc/Circle**disProg2sts:**Convert disProg object to sts and vice versa**earsC:**Surveillance for a count data time series using the EARS C1,...**epidata:**Continuous-Time SIR Event History of a Fixed Population**epidata_animate:**Spatio-Temporal Animation of an Epidemic**epidataCS:**Continuous Space-Time Marked Point Patterns with Grid-Based...**epidataCS_aggregate:**Conversion (aggregation) of '"epidataCS"' to '"epidata"' or...**epidataCS_animate:**Spatio-Temporal Animation of a Continuous-Time...**epidataCS_permute:**Randomly Permute Time Points or Locations of '"epidataCS"'**epidataCS_plot:**Plotting the Events of an Epidemic over Time and Space**epidataCS_update:**Update method for '"epidataCS"'**epidata_intersperse:**Impute Blocks for Extra Stops in '"epidata"' Objects**epidata_plot:**Plotting the Evolution of an Epidemic**Browse all...**

bestCombination | R Documentation |

Given a prime number factorization `x`

, `bestCombination`

partitions `x`

into two groups, such that the product of the numbers
in group one is as similar as possible to the product
of the numbers of group two. This is useful in `magic.dim`

.

```
bestCombination(x)
```

`x` |
prime number factorization |

a vector `c(prod(set1),prod(set2))`

algo.glrnb: Count data regression charts using the generalized likelihood ratio statistic
Getting started with outbreak detection
hhh4: An endemic-epidemic modelling framework for infectious disease counts
hhh4 (spatio-temporal): Endemic-epidemic modeling of areal count time series
Monitoring count time series in R: Aberration detection in public health surveillance
twinSIR: Individual-level epidemic modeling for a fixed population with known distances
twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns

What can we improve?

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.

Close