View source: R/test_intersection_sw.R
| test_zmax_onesided | R Documentation |
Calculating test statistics and p-values for the onesided Zmax / minP test.z
Given parameter estimates (\widehat{\theta}_1, \ldots,
\widehat{\theta}_p)^\top with approximate assymptotic covariance matrix
\widehat{S}, let Z_i = \frac{\widehat{\theta}_i -
\delta_i}{\operatorname{SE}(\widehat{\theta}_i)} , where
\operatorname{SE}(\widehat{\theta}_i) = \widehat{S}_{ii}. The Zmax
test statistic is then Z_{max} = \max \{Z_1,\ldots,Z_p\}, and the
null-hypothesis is H_0: \theta_i \leq \delta_i, i=1,\ldots,p with
non-inferiority margin \delta_i, i=1,\ldots,p, for which the p-value
is calculated as 1 - \Phi_R(Z_{max}) where \phi_R is the CDF
of the multivariate normal distribution with mean zero and correlation
matrix R = \operatorname{diag}(S_{11}^{-0.5}, \ldots,
S_{pp}^{-0.5})S\operatorname{diag}(S_{11}^{-0.5}, \ldots, S_{pp}^{-0.5}).
test_zmax_onesided(par, vcov, noninf = 0, index = NULL, par.name = "theta")
par |
(numeric) parameter estimates or |
vcov |
(matrix) asymptotic variance estimate |
noninf |
(numeric) non-inferiority margins |
index |
(integer) subset of parameters to test |
par.name |
(character) parameter names in output |
htest object
Christian Bressen Pipper, Klaus Kähler Holst
test_intersection_sw() lava::test_wald()
lava::closed_testing()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.