Nothing
#' @title Run a pipeline of targets.
#' @export
#' @family pipeline
#' @description Run the pipeline you defined in the targets
#' script file (default: `_targets.R`). `tar_make()`
#' runs the correct targets in the correct order and stores the return
#' values in `_targets/objects/`. Use [tar_read()] to read a target
#' back into R, and see
#' <https://docs.ropensci.org/targets/reference/index.html#clean>
#' to manage output files.
#' @inheritSection tar_meta Storage access
#' @return `NULL` except if `callr_function = callr::r_bg()`, in which case
#' a handle to the `callr` background process is returned. Either way,
#' the value is invisibly returned.
#' @inheritParams tar_validate
#' @param names Names of the targets to run or check. Set to `NULL` to
#' check/run all the targets (default).
#' The object supplied to `names` should be a
#' `tidyselect` expression like [any_of()] or [starts_with()]
#' from `tidyselect` itself, or [tar_described_as()] to select target names
#' based on their descriptions.
#' @param shortcut Logical of length 1, how to interpret the `names` argument.
#' If `shortcut` is `FALSE` (default) then the function checks
#' all targets upstream of `names` as far back as the dependency graph goes.
#' `shortcut = TRUE` increases speed if there are a lot of
#' up-to-date targets, but it assumes all the dependencies
#' are up to date, so please use with caution.
#' It relies on stored metadata for information about upstream dependencies.
#' `shortcut = TRUE` only works if you set `names`.
#' @param reporter Character of length 1, name of the reporter to user.
#' Controls how messages are printed as targets run in the pipeline.
#' Defaults to `tar_config_get("reporter_make")`.
#'
#' The default of `tar_config_get("reporter_make")` is `"terse"`
#' if running inside a literate programming document
#' (i.e. the `knitr.in.progress` global option is `TRUE`).
#' Otherwise, the default is `"balanced"`. Choices:
#'
#' * `"balanced"`: a reporter that balances efficiency
#' with informative detail.
#' Uses a `cli` progress bar instead of printing messages
#' for individual dynamic branches.
#' To the right of the progress bar is a text string like
#' "22.6s, 4510+, 124-" (22.6 seconds elapsed, 4510 targets
#' completed successfully so far, 124 targets skipped so far).
#'
#' For best results with the balanced reporter, you may need to
#' adjust your `cli` settings. See global options `cli.num_colors`
#' and `cli.dynamic` at
#' <https://cli.r-lib.org/reference/cli-config.html>.
#' On that page is also the `CLI_TICK_TIME` environment variable
#' which controls the time delay between progress bar updates.
#' If the delay is too low, then overhead from printing to the console
#' may slow down the pipeline.
#' * `"terse"`: like the `"balanced"` reporter, but without a progress bar.
#' * `"silent"`: print nothing.
#' * `"timestamp"`: same as the `"verbose"` reporter except that each
#' message begins with a time stamp.
#' * `"verbose"`: print messages for individual targets
#' as they dispatch or complete. Each individual
#' target-specific time (e.g. "3.487 seconds") is strictly the
#' elapsed runtime of the target and does not include
#' steps like data retrieval and output storage.
#' @param seconds_interval Deprecated on 2023-08-24
#' (targets version 1.2.2.9001).
#' Use `seconds_meta_append` and `seconds_meta_upload` instead.
#' @param seconds_meta_append Positive numeric of length 1 with the minimum
#' number of seconds between saves to the local metadata and progress files
#' in the data store.
#' his is an aggressive optimization setting not recommended
#' for most users:
#' higher values generally make the pipeline run faster, but unsaved
#' work (in the event of a crash) is not up to date.
#' When the pipeline ends,
#' all the metadata and progress data is saved immediately,
#' regardless of `seconds_meta_append`.
#'
#' When the pipeline is just skipping targets, the actual interval
#' between saves is `max(1, seconds_meta_append)` to reduce
#' overhead.
#' @param seconds_meta_upload Positive numeric of length 1 with the minimum
#' number of seconds between uploads of the metadata and progress data
#' to the cloud
#' (see <https://books.ropensci.org/targets/cloud-storage.html>).
#' Higher values generally make the pipeline run faster, but unsaved
#' work (in the event of a crash) may not be backed up to the cloud.
#' When the pipeline ends,
#' all the metadata and progress data is uploaded immediately,
#' regardless of `seconds_meta_upload`.
#' @param seconds_reporter Deprecated on 2025-03-31
#' (`targets` version 1.10.1.9010).
#' @param garbage_collection Deprecated. Use the `garbage_collection`
#' argument of [tar_option_set()] instead to run garbage collection
#' at regular intervals in a pipeline, or use the argument of the same
#' name in [tar_target()] to activate garbage collection for
#' a specific target.
#' @param use_crew Logical of length 1, whether to use `crew` if the
#' `controller` option is set in `tar_option_set()` in the target script
#' (`_targets.R`). See <https://books.ropensci.org/targets/crew.html>
#' for details.
#' @param terminate_controller Logical of length 1. For a `crew`-integrated
#' pipeline, whether to terminate the controller after stopping
#' or finishing the pipeline. This should almost always be set to `TRUE`,
#' but `FALSE` combined with `callr_function = NULL`
#' will allow you to get the running controller using
#' `tar_option_get("controller")` for debugging purposes.
#' For example, `tar_option_get("controller")$summary()` produces a
#' worker-by-worker summary of the work assigned and completed,
#' `tar_option_get("controller")$queue` is the list of unresolved tasks,
#' and `tar_option_get("controller")$results` is the list of
#' tasks that completed but were not collected with `pop()`.
#' You can manually terminate the controller with
#' `tar_option_get("controller")$summary()` to close down the dispatcher
#' and worker processes.
#' @param as_job `TRUE` to run as an RStudio IDE / Posit Workbench job,
#' if running on RStudio IDE / Posit Workbench.
#' `FALSE` to run as a `callr` process in the main R session
#' (depending on the `callr_function` argument).
#' If `as_job` is `TRUE`, then the `rstudioapi` package must be installed.
#' @examples
#' if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { # for CRAN
#' tar_dir({ # tar_dir() runs code from a temp dir for CRAN.
#' tar_script({
#' library(targets)
#' library(tarchetypes)
#' list(
#' tar_target(y1, 1 + 1),
#' tar_target(y2, 1 + 1),
#' tar_target(z, y1 + y2)
#' )
#' }, ask = FALSE)
#' tar_make(starts_with("y")) # Only processes y1 and y2.
#' # Distributed computing with crew:
#' if (requireNamespace("crew", quietly = TRUE)) {
#' tar_script({
#' library(targets)
#' library(tarchetypes)
#' tar_option_set(controller = crew::controller_local())
#' list(
#' tar_target(y1, 1 + 1),
#' tar_target(y2, 1 + 1),
#' tar_target(z, y1 + y2)
#' )
#' }, ask = FALSE)
#' tar_make()
#' }
#' })
#' }
tar_make <- function(
names = NULL,
shortcut = targets::tar_config_get("shortcut"),
reporter = targets::tar_config_get("reporter_make"),
seconds_meta_append = targets::tar_config_get("seconds_meta_append"),
seconds_meta_upload = targets::tar_config_get("seconds_meta_upload"),
seconds_reporter = targets::tar_config_get("seconds_reporter"),
seconds_interval = targets::tar_config_get("seconds_interval"),
callr_function = callr::r,
callr_arguments = targets::tar_callr_args_default(callr_function, reporter),
envir = parent.frame(),
script = targets::tar_config_get("script"),
store = targets::tar_config_get("store"),
garbage_collection = NULL,
use_crew = targets::tar_config_get("use_crew"),
terminate_controller = TRUE,
as_job = targets::tar_config_get("as_job")
) {
tar_assert_allow_meta("tar_make", store)
force(envir)
tar_assert_scalar(shortcut)
tar_assert_lgl(shortcut)
tar_assert_callr_function(callr_function)
tar_assert_list(callr_arguments)
tar_assert_dbl(seconds_meta_append)
tar_assert_scalar(seconds_meta_append)
tar_assert_none_na(seconds_meta_append)
tar_assert_ge(seconds_meta_append, 0)
tar_assert_dbl(seconds_meta_upload)
tar_assert_scalar(seconds_meta_upload)
tar_assert_none_na(seconds_meta_upload)
tar_assert_ge(seconds_meta_upload, 0)
tar_deprecate_seconds_interval(seconds_interval)
tar_assert_lgl(terminate_controller)
tar_assert_scalar(terminate_controller)
tar_assert_none_na(terminate_controller)
tar_assert_lgl(as_job)
tar_assert_scalar(as_job)
tar_assert_none_na(as_job)
reporter <- tar_make_reporter(reporter)
if_any(
is.null(garbage_collection),
NULL,
tar_warn_deprecate(
"The garbage_collection argument of tar_make() was deprecated ",
"in targets version 1.8.0.9004 (2024-10-22). The garbage_collection ",
"argument of tar_option_set() is more unified and featureful now. ",
"Please have a look at its documentation."
)
)
if_any(
is.null(seconds_reporter),
NULL,
tar_warn_deprecate(
"The seconds_reporter argument of tar_make() etc. was deprecated ",
"in targets version 1.10.1.9010 (2025-03-31)."
)
)
# Tested in tests/interactive/test-job.R.
# nocov start
if (as_job && !rstudio_available(verbose = reporter != "silent")) {
as_job <- FALSE
}
if (as_job) {
call <- match.call()
tar_make_as_job(call = call)
return(invisible())
}
# nocov end
targets_arguments <- list(
path_store = store,
names_quosure = rlang::enquo(names),
shortcut = shortcut,
reporter = reporter,
seconds_meta_append = seconds_meta_append,
seconds_meta_upload = seconds_meta_upload,
use_crew = use_crew,
terminate_controller = terminate_controller
)
out <- callr_outer(
targets_function = tar_make_inner,
targets_arguments = targets_arguments,
callr_function = callr_function,
callr_arguments = callr_arguments,
envir = envir,
script = script,
store = store,
fun = "tar_make"
)
invisible(out)
}
tar_make_inner <- function(
pipeline,
path_store,
names_quosure,
shortcut,
reporter,
seconds_meta_append,
seconds_meta_upload,
use_crew,
terminate_controller
) {
names <- tar_tidyselect_eval(names_quosure, pipeline_get_names(pipeline))
controller <- tar_option_get("controller")
if (is.null(controller) || (!use_crew)) {
pipeline_reset_deployments(pipeline)
queue <- if_any(
pipeline_uses_priorities(pipeline),
"parallel",
"sequential"
)
local_init(
pipeline = pipeline,
meta = meta_init(path_store = path_store),
names = names,
shortcut = shortcut,
queue = queue,
reporter = reporter,
seconds_meta_append = seconds_meta_append,
seconds_meta_upload = seconds_meta_upload,
envir = tar_option_get("envir")
)$run()
} else {
tar_assert_package("crew (>= 0.9.0)")
crew_init(
pipeline = pipeline,
meta = meta_init(path_store = path_store),
names = names,
shortcut = shortcut,
queue = "parallel",
reporter = reporter,
seconds_meta_append = seconds_meta_append,
seconds_meta_upload = seconds_meta_upload,
envir = tar_option_get("envir"),
controller = controller,
terminate_controller = terminate_controller
)$run()
}
invisible()
}
tar_make_reporter <- function(reporter) {
reporter <- if_any(
reporter %in% c("summary", "timestamp_positives", "verbose_positives"),
{
tar_warn_deprecate(
"The summary reporter in tar_make() etc. was deprecated ",
"in targets version 1.10.1.9010 (2025-03-31). ",
"Use the \"balanced\", \"verbose\", or \"timestamp\" ",
"reporter instead."
)
"balanced"
},
reporter
)
tar_assert_flag(reporter, tar_reporters_make())
reporter
}
# Tested in tests/interactive/test-job.R.
# nocov start
tar_make_as_job <- function(call) {
args <- as.list(call)[-1L]
args$as_job <- FALSE
args$callr_function <- NULL
args <- paste(names(args), "=", map_chr(args, tar_deparse_safe))
args <- c(args, "callr_function = NULL")
args <- paste0(args, collapse = ", ")
text <- sprintf("targets::tar_make(%s)", args)
script <- tempfile()
writeLines(text, script)
rstudioapi::jobRunScript(
path = script,
name = paste("targets", Sys.time()),
workingDir = getwd(),
importEnv = FALSE,
exportEnv = ""
)
}
# nocov end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.