Description Usage Arguments Value See Also Examples
Compute the Euclidean distance among principal components.
| 1 | pca2euclid(.pcaobj, .num.comps = 2)
 | 
| .pcaobj | An object returned by  | 
| .num.comps | On how many principal components compute the distance. | 
Matrix of distances.
prcomp, pca.segments, repOverlap, permutDistTest
| 1 2 3 4 5 6 7 8 9 10 | ## Not run: 
mat.ov <- repOverlap(AS_DATA, .norm = T)
mat.gen.pca <- pca.segments(AS_DATA, T, .genes = HUMAN_TRBV)
mat.ov.pca <- prcomp(mat.ov, scale. = T)
mat.gen.pca.dist <- pca2euclid(mat.gen.pca)
mat.ov.pca.dist <- pca2euclid(mat.ov.pca)
permutDistTest(mat.gen.pca.dist, list(<list of groups here>))
permutDistTest(mat.ov.pca.dist, list(<list of groups here>))
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.