Nothing
#' Template for Generalized Estimating Equations (GEE) analysis module
#'
#' Creates a valid expression to generate an analysis table using Generalized Estimating Equations (GEE).
#'
#' @inheritParams template_arguments
#' @param output_table (`character`)\cr type of output table (`"t_gee_cov", "t_gee_coef", "t_gee_lsmeans"`).
#' @param data_model_fit (`character`)\cr dataset used to fit the model by `tern.gee::fit_gee()`.
#' @param dataname_lsmeans (`character`)\cr dataset used for `alt_counts_df` argument of `rtables::build_table()`.
#' @param split_covariates (`character`)\cr vector of names of variables to use as covariates in
#' `tern.gee::vars_gee()`.
#' @param cor_struct (`character`)\cr assumed correlation structure in `tern.gee::fit_gee`.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_a_gee()]
#'
#' @keywords internal
template_a_gee <- function(output_table,
data_model_fit = "ANL",
dataname_lsmeans = "ANL_ADSL",
input_arm_var = "ARM",
ref_group = "A: Drug X",
aval_var,
id_var,
arm_var,
visit_var,
split_covariates,
cor_struct,
conf_level = 0.95,
basic_table_args = teal.widgets::basic_table_args()) {
y <- list()
y$model <- list()
y$table <- list()
all_basic_table_args <- teal.widgets::resolve_basic_table_args(basic_table_args)
model_list <- add_expr(
list(),
substitute(
expr = {
model_fit <- tern.gee::fit_gee(
vars = tern.gee::vars_gee(
response = as.vector(aval_var),
covariates = as.vector(split_covariates),
id = as.vector(id_var),
arm = as.vector(arm_var),
visit = as.vector(visit_var)
),
data = data_model_fit,
regression = "logistic",
cor_struct = cor_struct
)
},
env = list(
data_model_fit = as.name(data_model_fit),
aval_var = aval_var,
split_covariates = split_covariates,
id_var = id_var,
arm_var = arm_var,
visit_var = visit_var,
cor_struct = cor_struct
)
)
)
table_list <-
add_expr(
list(),
if (output_table == "t_gee_cov") {
substitute(
expr = {
table <- tern.gee::as.rtable(model_fit, type = "cov")
subtitles(table) <- st
main_footer(table) <- mf
},
env = list(
st = basic_table_args$subtitles,
mf = basic_table_args$main_footer
)
)
} else if (output_table == "t_gee_coef") {
substitute(
expr = {
table <- tern.gee::as.rtable(data.frame(Coefficient = model_fit$coefficients))
subtitles(table) <- st
main_footer(table) <- mf
},
env = list(
conf_level = conf_level,
st = basic_table_args$subtitles,
mf = basic_table_args$main_footer
)
)
} else if (output_table == "t_gee_lsmeans") {
substitute(
expr = {
lsmeans_fit_model <- tern.gee::lsmeans(model_fit, conf_level)
table <- rtables::basic_table(show_colcounts = TRUE) %>%
rtables::split_cols_by(var = input_arm_var, ref_group = model_fit$ref_level) %>%
tern.gee::summarize_gee_logistic() %>%
rtables::build_table(
df = lsmeans_fit_model,
alt_counts_df = dataname_lsmeans
)
subtitles(table) <- st
main_footer(table) <- mf
},
env = list(
dataname_lsmeans = as.name(dataname_lsmeans),
conf_level = conf_level,
input_arm_var = input_arm_var,
st = basic_table_args$subtitles,
mf = basic_table_args$main_footer
)
)
}
)
# Note: l_html_concomitant_adcm is still not included since one column is available out of 9
y$model <- bracket_expr(model_list)
y$table <- bracket_expr(table_list)
y
}
#' teal Module: Generalized Estimating Equations (GEE) analysis
#'
#' This module produces an analysis table using Generalized Estimating Equations (GEE).
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_arguments
#' @inheritParams template_a_gee
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`ElementaryTable` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_a_gee(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied to the `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADQS <- tmc_ex_adqs %>%
#' filter(ABLFL != "Y" & ABLFL2 != "Y") %>%
#' mutate(
#' AVISIT = as.factor(AVISIT),
#' AVISITN = rank(AVISITN) %>%
#' as.factor() %>%
#' as.numeric() %>%
#' as.factor(),
#' AVALBIN = AVAL < 50 # Just as an example to get a binary endpoint.
#' ) %>%
#' droplevels()
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_a_gee(
#' label = "GEE",
#' dataname = "ADQS",
#' aval_var = choices_selected("AVALBIN", fixed = TRUE),
#' id_var = choices_selected(c("USUBJID", "SUBJID"), "USUBJID"),
#' arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
#' visit_var = choices_selected(c("AVISIT", "AVISITN"), "AVISIT"),
#' paramcd = choices_selected(
#' choices = value_choices(data[["ADQS"]], "PARAMCD", "PARAM"),
#' selected = "FKSI-FWB"
#' ),
#' cov_var = choices_selected(c("BASE", "AGE", "SEX", "BASE:AVISIT"), NULL)
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_a_gee <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
aval_var,
id_var,
arm_var,
visit_var,
cov_var,
arm_ref_comp = NULL,
paramcd,
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_a_gee (prototype)")
cov_var <- teal.transform::add_no_selected_choices(cov_var, multiple = TRUE)
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(id_var, "choices_selected")
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(visit_var, "choices_selected")
checkmate::assert_class(cov_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname),
id_var = cs_to_des_select(id_var, dataname = dataname),
visit_var = cs_to_des_select(visit_var, dataname = dataname),
cov_var = cs_to_des_select(cov_var, dataname = dataname, multiple = TRUE),
split_covariates = cs_to_des_select(split_choices(cov_var), dataname = dataname, multiple = TRUE),
aval_var = cs_to_des_select(aval_var, dataname = dataname)
)
teal::module(
label = label,
server = srv_gee,
ui = ui_gee,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
arm_ref_comp = arm_ref_comp,
label = label,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
ui_gee <- function(id, ...) {
a <- list(...) # module args
ns <- NS(id)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$paramcd,
a$id_var,
a$visit_var,
a$cov_var,
a$aval_var
)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
tags$h3(textOutput(ns("gee_title"))),
teal.widgets::table_with_settings_ui(ns("table"))
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "paramcd", "id_var", "visit_var", "cov_var", "aval_var")]),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Analysis Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Endpoint",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("visit_var"),
label = "Visit Variable",
data_extract_spec = a$visit_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("cov_var"),
label = "Covariates",
data_extract_spec = a$cov_var,
is_single_dataset = is_single_dataset_value
),
shinyjs::hidden(
teal.transform::data_extract_ui(
id = ns("split_covariates"),
label = "Split Covariates",
data_extract_spec = a$split_covariates,
is_single_dataset = is_single_dataset_value
)
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
shinyjs::hidden(
uiOutput(ns("arms_buckets")),
helpText(
id = ns("help_text"), "Multiple reference groups are automatically combined into a single group."
),
checkboxInput(
ns("combine_comp_arms"),
"Combine all comparison groups?",
value = FALSE
)
),
teal.transform::data_extract_ui(
id = ns("id_var"),
label = "Subject Identifier",
data_extract_spec = a$id_var,
is_single_dataset = is_single_dataset_value
),
selectInput(
ns("cor_struct"),
"Correlation Structure",
choices = c(
"unstructured",
"toeplitz", # needs the fix of https://github.com/insightsengineering/tern.gee/issues/3
"auto-regressive",
"compound symmetry"
),
selected = "unstructured",
multiple = FALSE
),
teal.widgets::optionalSelectInput(
ns("conf_level"),
"Confidence Level",
a$conf_level$choices,
a$conf_level$selected,
multiple = FALSE,
fixed = a$conf_level$fixed
),
radioButtons(
ns("output_table"),
"Output Type",
choices = c(
"LS means" = "t_gee_lsmeans",
"Covariance" = "t_gee_cov",
"Coefficients" = "t_gee_coef"
),
selected = "t_gee_lsmeans"
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table"))
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
srv_gee <- function(id,
data,
filter_panel_api,
reporter,
dataname,
parentname,
arm_var,
paramcd,
id_var,
visit_var,
cov_var,
split_covariates,
aval_var,
arm_ref_comp,
label,
plot_height,
plot_width,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
## split_covariates ----
observeEvent(input[[extract_input("cov_var", dataname)]],
ignoreNULL = FALSE,
{
# update covariates as actual variables
split_interactions_values <- split_interactions(
input[[extract_input("cov_var", dataname)]]
)
arm_var_value <- input[[extract_input("arm_var", parentname)]]
arm_in_cov <- length(intersect(split_interactions_values, arm_var_value)) >= 1L
if (arm_in_cov) {
split_covariates_selected <- setdiff(split_interactions_values, arm_var_value)
} else {
split_covariates_selected <- split_interactions_values
}
teal.widgets::updateOptionalSelectInput(
session,
inputId = extract_input("split_covariates", dataname),
selected = split_covariates_selected
)
}
)
## arm_ref_comp_observer ----
arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = reactive(data()[[parentname]]),
arm_ref_comp = arm_ref_comp,
module = "tm_a_gee"
)
## data_merge_modules ----
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
paramcd = paramcd,
id_var = id_var,
visit_var = visit_var,
split_covariates = split_covariates,
aval_var = aval_var
),
datasets = data,
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("An analysis variable is required"),
arm_var = shinyvalidate::sv_required("A treatment variable is required"),
id_var = shinyvalidate::sv_required("A Subject identifier is required"),
visit_var = shinyvalidate::sv_required("A visit variable is required")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required("An endpoint is required")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level"))
iv$add_rule(
"conf_level",
shinyvalidate::sv_between(
0, 1,
inclusive = c(FALSE, FALSE),
message_fmt = "Confidence level must be between 0 and 1"
)
)
iv$add_rule("cor_struct", shinyvalidate::sv_required("Please choose a correlation structure"))
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
# Initially hide the output title because there is no output yet.
shinyjs::show("gee_title")
validate_checks <- reactive({
teal::validate_inputs(iv_r())
# To do in production: add validations.
NULL
})
## table_r ----
table_q <- reactive({
validate_checks()
output_table <- input$output_table
conf_level <- as.numeric(input$conf_level)
col_source <- merged$anl_input_r()$columns_source
filter_info <- merged$anl_input_r()$filter_info
req(output_table)
basic_table_args$subtitles <- paste0(
"Analysis Variable: ", col_source$aval_var,
", Endpoint: ", filter_info$paramcd[[1]]$selected[[1]],
ifelse(length(col_source$split_covariates) == 0, "",
paste(", Covariates:", paste(col_source$split_covariates, collapse = ", "))
)
)
basic_table_args$main_footer <- c(paste("Correlation Structure:", input$cor_struct))
my_calls <- template_a_gee(
output_table = output_table,
data_model_fit = "ANL",
dataname_lsmeans = "ANL_ADSL",
input_arm_var = as.vector(col_source$arm_var),
conf_level = conf_level,
aval_var = col_source$aval_var,
split_covariates = col_source$split_covariates,
id_var = col_source$id_var,
arm_var = col_source$arm_var,
visit_var = col_source$visit_var,
cor_struct = input$cor_struct,
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
output$gee_title <- renderText({
# Input on output type.
output_table <- input$output_table
output_title <- switch(output_table,
"t_gee_cov" = "Residual Covariance Matrix Estimate",
"t_gee_coef" = "Model Coefficients",
"t_gee_lsmeans" = "LS Means Estimates"
)
output_title
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = table_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Generalized Estimating Equations (GEE) Analysis Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
table_type <- switch(input$output_table,
"t_gee_cov" = "Residual Covariance Matrix Estimate",
"t_gee_coef" = "Model Coefficients",
"t_gee_lsmeans" = "LS Means Estimates"
)
card$append_text(paste(table_type, "Table"), "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.