Nothing
#' teal Module: Simple Bar Chart and Table of Counts per Category
#'
#' This module produces a [ggplot2::ggplot()] type bar chart and summary table of counts per category.
#'
#' Categories can be defined up to four levels deep and are defined through the `x`, `fill`,
#' `x_facet`, and `y_facet` parameters. Any parameters set to `NULL` (default) are ignored.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_arguments
#' @param x (`data_extract_spec`)\cr variable on the x-axis.
#' @param fill (`data_extract_spec`)\cr grouping variable to determine bar colors.
#' @param x_facet (`data_extract_spec`)\cr row-wise faceting groups.
#' @param y_facet (`data_extract_spec`)\cr column-wise faceting groups.
#' @param plot_options (`list`)\cr list of plot options.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`ggplot`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_barchart_simple(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied only to `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(nestcolor)
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl %>%
#' mutate(ITTFL = factor("Y") %>%
#' with_label("Intent-To-Treat Population Flag"))
#' ADAE <- tmc_ex_adae %>%
#' filter(!((AETOXGR == 1) & (AESEV == "MILD") & (ARM == "A: Drug X")))
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADAE <- data[["ADAE"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_barchart_simple(
#' label = "ADAE Analysis",
#' x = data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' choices = variable_choices(
#' ADSL,
#' c(
#' "ARM", "ACTARM", "SEX",
#' "RACE", "ITTFL", "SAFFL", "STRATA2"
#' )
#' ),
#' selected = "ACTARM",
#' multiple = FALSE
#' )
#' ),
#' fill = list(
#' data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' choices = variable_choices(
#' ADSL,
#' c(
#' "ARM", "ACTARM", "SEX",
#' "RACE", "ITTFL", "SAFFL", "STRATA2"
#' )
#' ),
#' selected = "SEX",
#' multiple = FALSE
#' )
#' ),
#' data_extract_spec(
#' dataname = "ADAE",
#' select = select_spec(
#' choices = variable_choices(ADAE, c("AETOXGR", "AESEV", "AESER")),
#' selected = NULL,
#' multiple = FALSE
#' )
#' )
#' ),
#' x_facet = list(
#' data_extract_spec(
#' dataname = "ADAE",
#' select = select_spec(
#' choices = variable_choices(ADAE, c("AETOXGR", "AESEV", "AESER")),
#' selected = "AETOXGR",
#' multiple = FALSE
#' )
#' ),
#' data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' choices = variable_choices(
#' ADSL,
#' c(
#' "ARM", "ACTARM", "SEX",
#' "RACE", "ITTFL", "SAFFL", "STRATA2"
#' )
#' ),
#' selected = NULL,
#' multiple = FALSE
#' )
#' )
#' ),
#' y_facet = list(
#' data_extract_spec(
#' dataname = "ADAE",
#' select = select_spec(
#' choices = variable_choices(ADAE, c("AETOXGR", "AESEV", "AESER")),
#' selected = "AESEV",
#' multiple = FALSE
#' )
#' ),
#' data_extract_spec(
#' dataname = "ADSL",
#' select = select_spec(
#' choices = variable_choices(
#' ADSL,
#' c(
#' "ARM", "ACTARM", "SEX",
#' "RACE", "ITTFL", "SAFFL", "STRATA2"
#' )
#' ),
#' selected = NULL,
#' multiple = FALSE
#' )
#' )
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_g_barchart_simple <- function(x = NULL,
fill = NULL,
x_facet = NULL,
y_facet = NULL,
label = "Count Barchart",
plot_options = NULL,
plot_height = c(600L, 200L, 2000L),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_g_barchart_simple")
checkmate::assert_string(label)
checkmate::assert_list(plot_options, null.ok = TRUE)
if (length(c(x, fill, x_facet, y_facet)) == 0) {
stop("at least one must be specified. 'x', 'fill', 'x_facet', 'y_facet' is NULL")
}
x <- teal.transform::list_extract_spec(x, allow_null = TRUE)
fill <- teal.transform::list_extract_spec(fill, allow_null = TRUE)
x_facet <- teal.transform::list_extract_spec(x_facet, allow_null = TRUE)
y_facet <- teal.transform::list_extract_spec(y_facet, allow_null = TRUE)
teal.transform::check_no_multiple_selection(x)
teal.transform::check_no_multiple_selection(fill)
teal.transform::check_no_multiple_selection(x_facet)
teal.transform::check_no_multiple_selection(y_facet)
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(ggplot2_args, "ggplot2_args")
assert_decorators(decorators, names = "plot")
plot_options <- utils::modifyList(
list(stacked = FALSE), # default
`if`(is.null(plot_options), list(), plot_options)
)
ui_args <- as.list(environment())
data_extract_list <- list(
x = x, fill = fill,
x_facet = x_facet, y_facet = y_facet
)
module(
label = label,
server = srv_g_barchart_simple,
ui = ui_g_barchart_simple,
ui_args = ui_args,
server_args = list(
x = x,
fill = fill,
x_facet = x_facet,
y_facet = y_facet,
plot_height = plot_height,
plot_width = plot_width,
ggplot2_args = ggplot2_args,
decorators = decorators
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_g_barchart_simple <- function(id, ...) {
ns <- NS(id)
args <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(args$x, args$fill, args$x_facet, args$y_facet)
tagList(
singleton(
tags$head(includeCSS(system.file("css/custom.css", package = "teal.modules.clinical")))
),
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
teal.widgets::plot_with_settings_ui(id = ns("myplot")),
uiOutput(ns("table"), class = "overflow-y-scroll max-h-250")
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(args[c("x", "fill", "x_facet", "y_facet")]),
if (!is.null(args$x)) {
teal.transform::data_extract_ui(
id = ns("x"),
label = "X variable",
data_extract_spec = args$x,
is_single_dataset = is_single_dataset_value
)
},
if (!is.null(args$fill)) {
teal.transform::data_extract_ui(
id = ns("fill"),
label = "Fill",
data_extract_spec = args$fill,
is_single_dataset = is_single_dataset_value
)
},
if (!is.null(args$x_facet)) {
teal.transform::data_extract_ui(
id = ns("x_facet"),
label = "Column facetting variable",
data_extract_spec = args$x_facet,
is_single_dataset = is_single_dataset_value
)
},
if (!is.null(args$y_facet)) {
teal.transform::data_extract_ui(
id = ns("y_facet"),
label = "Row facetting variable",
data_extract_spec = args$y_facet,
is_single_dataset = is_single_dataset_value
)
},
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(args$decorators, "plot")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional plot settings",
if (!is.null(args$fill)) {
radioButtons(
inputId = ns("barlayout"),
label = "Covariate Bar Layout",
choices = c("Side by side" = "side_by_side", "Stacked" = "stacked"),
selected = if (args$plot_options$stacked) "stacked" else "side_by_side",
inline = TRUE
)
},
if (!(is.null(args$x_facet))) {
checkboxInput(
ns("facet_scale_x"),
"Fixed scales for column facets",
value = TRUE
)
},
if (!(is.null(args$y_facet))) {
checkboxInput(
ns("facet_scale_y"),
"Fixed scales for row facets",
value = TRUE
)
},
checkboxInput(
ns("label_bars"),
"Label bars",
value = `if`(is.null(args$plot_options$label_bars), TRUE, args$plot_options$label_bars)
),
checkboxInput(
ns("rotate_bar_labels"),
"Rotate bar labels",
value = `if`(is.null(args$plot_options$rotate_bar_labels), FALSE, args$plot_options$rotate_bar_labels)
),
checkboxInput(
ns("rotate_x_label"),
"Rotate x label",
value = `if`(is.null(args$plot_options$rotate_x_label), FALSE, args$plot_options$rotate_x_label)
),
checkboxInput(
ns("rotate_y_label"),
"Rotate y label",
value = `if`(is.null(args$plot_options$rotate_y_label), FALSE, args$plot_options$rotate_y_label)
),
checkboxInput(
ns("flip_axis"),
"Flip axes",
value = `if`(is.null(args$plot_options$flip_axis), FALSE, args$plot_options$flip_axis)
),
checkboxInput(
ns("show_n"),
"Show n",
value = `if`(is.null(args$plot_options$show_n), TRUE, args$plot_options$show_n)
),
sliderInput(
inputId = ns("expand_y_range"),
label = "Y-axis range expansion (fraction on top)",
min = 0,
max = 1,
value = 0.5,
step = 0.1
)
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = args$pre_output,
post_output = args$post_output
)
}
#' @keywords internal
srv_g_barchart_simple <- function(id,
data,
reporter,
filter_panel_api,
x,
fill,
x_facet,
y_facet,
plot_height,
plot_width,
ggplot2_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
rule_dupl <- function(others) {
function(value) {
othervals <- lapply(
Filter(Negate(is.null), selector_list()[others]), # some selectors could be ommited in tm_g_barchart_simple
function(x) x()$select
)
vars <- c(value, unlist(othervals))
dups <- unique(vars[duplicated(vars)])
if (value %in% dups) {
paste("Duplicated value:", value, collapse = ", ")
}
}
}
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(x = x, fill = fill, x_facet = x_facet, y_facet = y_facet),
datasets = data,
select_validation_rule = list(
x = shinyvalidate::compose_rules(
shinyvalidate::sv_required("Please select an x-variable"),
rule_dupl(others = c("fill", "x_facet", "y_facet"))
),
fill = shinyvalidate::compose_rules(
shinyvalidate::sv_optional(),
rule_dupl(others = c("x", "x_facet", "y_facet"))
),
x_facet = shinyvalidate::compose_rules(
shinyvalidate::sv_optional(),
rule_dupl(others = c("fill", "x", "y_facet"))
),
y_facet = shinyvalidate::compose_rules(
shinyvalidate::sv_optional(),
rule_dupl(others = c("fill", "x_facet", "x"))
)
),
dataset_validation_rule = list(
fill = NULL,
x_facet = NULL,
y_facet = NULL
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr))
})
count_q <- reactive({
anl_q <- anl_q()
teal::validate_has_data(anl_q[["ANL"]], 2)
groupby_vars <- r_groupby_vars()
# count
count_by_group <- function(groupby_vars, data_name) {
n_name <- get_n_name(groupby_vars)
count_by_group_expr(groupby_vars = groupby_vars, data_name = data_name)
}
count_exprs <- count_by_group(groupby_vars, data_name = "ANL")
if (input$show_n) {
count_exprs2 <- sapply(groupby_vars[-1], count_by_group, data_name = "counts")
count_str_to_col_exprs <- sapply(groupby_vars[-1], count_str_to_column_expr)
count_exprs <- c(count_exprs, count_exprs2, count_str_to_col_exprs)
}
data_list <- sapply(
names(data()),
function(x) reactive(data()[[x]]),
simplify = FALSE
)
anl_q <- anl_q %>%
teal.code::eval_code(code = count_exprs)
# add label and slice(1) as all patients in the same subgroup have same n_'s
anl_q <- anl_q %>%
teal.code::eval_code(
as.expression(
c(
bquote(attr(counts[[.(get_n_name(groupby_vars))]], "label") <- "Count"),
bquote(
counts <- counts %>%
dplyr::group_by_at(.(as.vector(groupby_vars))) %>%
dplyr::slice(1) %>%
dplyr::ungroup() %>%
dplyr::select(.(as.vector(groupby_vars)), dplyr::starts_with("n_"))
)
)
)
)
# dplyr::select loses labels
anl_q %>%
teal.code::eval_code(
teal.transform::get_anl_relabel_call(
columns_source = anl_inputs()$columns_source,
datasets = data_list,
anl_name = "counts"
)
)
})
all_q <- reactive({
teal::validate_inputs(iv_r())
groupby_vars <- as.list(r_groupby_vars()) # so $ access works below
y_lab <- substitute(
column_annotation_label(counts, y_name),
list(y_name = get_n_name(groupby_vars))
)
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args,
module_plot = teal.widgets::ggplot2_args(
labs = list(
title = quote(plot_title),
y = y_lab
),
theme = list(plot.title = quote(ggplot2::element_text(hjust = 0.5)))
)
)
plot_call <- make_barchart_simple_call(
y_name = get_n_name(groupby_vars),
x_name = groupby_vars$x_name,
fill_name = groupby_vars$fill_name,
x_facet_name = groupby_vars$x_facet_name,
y_facet_name = groupby_vars$y_facet_name,
label_bars = input$label_bars,
barlayout = input$barlayout,
flip_axis = input$flip_axis,
rotate_bar_labels = input$rotate_bar_labels,
rotate_x_label = input$rotate_x_label,
rotate_y_label = input$rotate_y_label,
expand_y_range = input$expand_y_range,
facet_scales = get_facet_scale(input$facet_scale_x, input$facet_scale_y),
ggplot2_args = all_ggplot2_args
)
ANL <- count_q()[["ANL"]]
all_q <- count_q() %>%
teal.code::eval_code(substitute(
env = list(groupby_vars = paste(groupby_vars, collapse = ", ")),
plot_title <- sprintf(
"Number of patients (total N = %s) for each combination of (%s)",
nrow(ANL),
groupby_vars
)
)) %>%
teal.code::eval_code(code = plot_call)
})
decorated_all_q_code <- srv_decorate_teal_data(
"decorator",
data = all_q,
decorators = select_decorators(decorators, "plot"),
expr = print(plot)
)
plot_r <- reactive(decorated_all_q_code()[["plot"]])
output$table <- renderTable({
req(iv_r()$is_valid())
teal.code::dev_suppress(all_q()[["counts"]])
})
# get grouping variables
# NULL: not present in UI, vs character(0): no selection
## returns named vector of non-NULL variables to group by
r_groupby_vars <- function() {
x_name <- if (is.null(x)) NULL else as.vector(anl_inputs()$columns_source$x)
fill_name <- if (is.null(fill)) NULL else as.vector(anl_inputs()$columns_source$fill)
x_facet_name <- if (is.null(x_facet)) NULL else as.vector(anl_inputs()$columns_source$x_facet)
y_facet_name <- if (is.null(y_facet)) NULL else as.vector(anl_inputs()$columns_source$y_facet)
# set to NULL when empty character
if (identical(x_name, character(0))) x_name <- NULL
if (identical(fill_name, character(0))) fill_name <- NULL
if (identical(x_facet_name, character(0))) x_facet_name <- NULL
if (identical(y_facet_name, character(0))) y_facet_name <- NULL
c(
x_name = x_name, fill_name = fill_name,
x_facet_name = x_facet_name, y_facet_name = y_facet_name
) # c() -> NULL entries are omitted
}
# Insert the plot into a plot with settings module from teal.widgets
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_all_q_code())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = "Bar Chart"
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Barchart Plot",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
# Helper functions for qenv ----
#' `ggplot2` call to generate simple bar chart
#'
#' @inheritParams tm_g_barchart_simple
#' @param y_name (`character` or `NULL`)\cr name of the y-axis variable.
#' @param x_name (`character` or `NULL`)\cr name of the x-axis variable. Defaults to `NULL` because it is dependent
#' on extract input which can be empty.
#' @param fill_name (`character` or `NULL`)\cr name of the variable to determine the bar fill color.
#' @param x_facet_name (`character` or `NULL`)\cr name of the variable to use for horizontal plot faceting.
#' @param y_facet_name (`character` or `NULL`)\cr name of the variable to use for vertical plot faceting.
#' @param label_bars (`logical` or `NULL`)\cr whether bars should be labeled. If `TRUE`, label bar numbers would
#' also be drawn as text.
#' @param barlayout (`character` or `NULL`)\cr type of the bar layout. Options are `"stacked"` (default) or
#' `"side_by_side"`.
#' @param flip_axis (`character` or `NULL`)\cr whether to flip the plot axis.
#' @param rotate_bar_labels (`logical` or `NULL`)\cr whether bar labels should be rotated by 45 degrees.
#' @param rotate_x_label (`logical` or `NULL`)\cr whether x-axis labels should be rotated by 45 degrees.
#' @param rotate_y_label (`logical` or `NULL`)\cr whether y-axis labels should be rotated by 45 degrees.
#' @param expand_y_range (`numeric` or `NULL`)\cr fraction of y-axis range to further expand by.
#' @param facet_scales (`character`)\cr value passed to `scales` argument of [ggplot2::facet_grid()]. Options are
#' `fixed`, `free_x`, `free_y`, and `free`.
#'
#' @return `call` to produce a `ggplot` object.
#'
#' @keywords internal
make_barchart_simple_call <- function(y_name,
x_name = NULL,
fill_name = NULL,
x_facet_name = NULL,
y_facet_name = NULL,
label_bars = TRUE,
barlayout = c("side_by_side", "stacked"),
flip_axis = FALSE,
rotate_bar_labels = FALSE,
rotate_x_label = FALSE,
rotate_y_label = FALSE,
expand_y_range = 0,
facet_scales = "free_x",
ggplot2_args = teal.widgets::ggplot2_args()) {
checkmate::assert_string(y_name)
checkmate::assert_string(x_name, null.ok = TRUE)
checkmate::assert_string(fill_name, null.ok = TRUE)
checkmate::assert_string(x_facet_name, null.ok = TRUE)
checkmate::assert_string(y_facet_name, null.ok = TRUE)
checkmate::assert_character(c(x_name, fill_name, x_facet_name, y_facet_name))
checkmate::assert_flag(label_bars)
checkmate::assert_scalar(expand_y_range)
barlayout <- match.arg(barlayout)
checkmate::assert_flag(flip_axis, null.ok = TRUE)
checkmate::assert_flag(rotate_x_label, null.ok = TRUE)
checkmate::assert_flag(rotate_y_label, null.ok = TRUE)
plot_args <- list(quote(ggplot2::ggplot(counts)))
# aesthetic variables
x_val_var <- if (is.null(x_name)) 0 else x_name
plot_args <- c(
plot_args,
if (is.null(fill_name)) {
bquote(ggplot2::aes(x = .data[[.(x_val_var)]]))
} else {
bquote(ggplot2::aes(x = .data[[.(x_val_var)]], fill = .data[[.(fill_name)]]))
}
)
if (!(is.null(x_facet_name) && is.null(y_facet_name))) {
# free_x is needed, otherwise when we facet on x and x-ticks are different for each facet value,
# it will fit all possible x-ticks across all facet values into each facet panel
plot_args <- c(plot_args, bquote(
ggplot2::facet_grid(.(facet_grid_formula(x_facet_name, y_facet_name)), scales = .(facet_scales))
))
}
# position stacking or dodging for bars and text
position <- if (is.null(fill_name) || (barlayout == "side_by_side")) {
# vjust = on top, i.e. don't place below when only one filling (i.e. nothing really stacked)
quote(ggplot2::position_dodge(0.9))
} else {
quote(ggplot2::position_stack(vjust = 0.5))
}
# draw bars
if (is.null(fill_name)) {
# nothing to put side-by-side, so put fill to one color only
# setting color via aesthetics does not work for some reason (but x = 0 above works)
plot_args <- c(plot_args, bquote(
ggplot2::geom_col(
ggplot2::aes(
y = .data[[.(y_name)]]
),
position = .(position),
fill = .(ifelse(
!is.null(getOption("ggplot2.discrete.colour")),
getOption("ggplot2.discrete.colour")[1],
"#b6cae9"
))
)
))
} else {
plot_args <- c(plot_args, bquote(
ggplot2::geom_col(ggplot2::aes(y = .data[[.(y_name)]]), position = .(position))
))
}
# draw numbers above bars
if (label_bars) {
# center text and move slightly to the top or to the right (depending on flip axes)
# see https://stackoverflow.com/questions/7263849/what-do-hjust-and-vjust-do-when-making-a-plot-using-ggplot
if (isTRUE(flip_axis)) {
hjust <- if (barlayout == "stacked") 0.5 else -1 # put above bars if not stacked
vjust <- 0.5
} else {
hjust <- 0.5
vjust <- if (barlayout == "stacked") 0.5 else -1 # put above bars if not stacked
}
plot_args <- c(plot_args, bquote(
ggplot2::geom_text(ggplot2::aes(y = .data[[.(y_name)]], label = .data[[.(y_name)]]),
stat = "identity",
angle = .(if (rotate_bar_labels) 45 else 0),
position = .(position),
# hjust, vjust are respective to position, i.e. top, center etc. alignment
hjust = .(hjust), vjust = .(vjust)
)
))
}
# add legend for fill
if (!is.null(fill_name)) {
plot_args <- c(plot_args, bquote(
ggplot2::guides(fill = ggplot2::guide_legend(title = column_annotation_label(counts, .(fill_name))))
))
}
if (isTRUE(flip_axis)) plot_args <- c(plot_args, quote(ggplot2::coord_flip()))
if (expand_y_range > 0) {
plot_args <- c(plot_args, bquote(ggplot2::scale_y_continuous(
labels = scales::comma,
expand = ggplot2::expansion(c(0, .(expand_y_range)))
)))
}
if (isTRUE(rotate_x_label)) ggplot2_args$theme[["axis.text.x"]] <- quote(ggplot2::element_text(angle = 45, hjust = 1))
if (isTRUE(rotate_y_label)) ggplot2_args$theme[["axis.text.y"]] <- quote(ggplot2::element_text(angle = 45, hjust = 1))
if (!is.null(x_name)) {
ggplot2_args$labs[["x"]] <- substitute(
expr = column_annotation_label(counts, x_name),
env = list(x_name = x_name)
)
} else {
ggplot2_args$theme[["axis.text.x"]] <- quote(ggplot2::element_blank())
ggplot2_args$theme[["axis.ticks.x"]] <- quote(ggplot2::element_blank())
}
parsed_ggplot2_args <- teal.widgets::parse_ggplot2_args(ggplot2_args)
plot_args <- c(plot_args, parsed_ggplot2_args)
bquote(plot <- .(call_concatenate(plot_args)))
}
# get name of column in "counts" data.frame
get_n_name <- function(groupby_vars) {
paste0("n_", paste(groupby_vars, collapse = "_"))
}
# expression that counts by specified group
# n_name: name of column to add counts to, by default determined from groupby_vars
count_by_group_expr <- function(groupby_vars, data_name = "counts") {
checkmate::assert_character(groupby_vars)
n_name <- get_n_name(groupby_vars)
parse(
text = sprintf(
"counts <- %s %%>%% dplyr::group_by(%s) %%>%% dplyr::mutate(%s = dplyr::n()) %%>%% dplyr::ungroup()",
data_name,
paste(groupby_vars, collapse = ","),
n_name
),
keep.source = FALSE
)
}
get_facet_scale <- function(x, y) {
facet_scale_x <- if (isTRUE(x)) {
"fixed"
} else {
"free"
}
facet_scale_y <- if (isTRUE(y)) {
"fixed"
} else {
"free"
}
if (facet_scale_x == "fixed" && facet_scale_y == "free") {
"free_y"
} else if (facet_scale_x == "free" && facet_scale_y == "fixed") {
"free_x"
} else {
facet_scale_x # fixed or free, as x and y match
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.