Nothing
#' Template: Individual Patient Plots
#'
#' Creates a valid expression to generate [ggplot2::ggplot()] plots of individual patients.
#'
#' @inheritParams template_arguments
#' @param visit_var (`character`)\cr name of the variable for visit timepoints.
#' @param add_baseline_hline (`logical`)\cr whether a horizontal line should be added to the plot at baseline y-value.
#' @param separate_by_obs (`logical`)\cr whether to create multi-panel plots.
#' @param suppress_legend (`logical`)\cr whether to suppress the plot legend.
#' @param arm_levels (`character`)\cr vector of all levels of `arm_var`.
#' @param avalu_first (`character`)\cr `avalu_var` text to append to the plot title and y-axis label if `add_avalu` is
#' `TRUE`.
#' @param paramcd_first (`character`)\cr `paramcd` text to append to the plot title and y-axis label.
#' @param add_avalu (`logical`)\cr whether `avalu_first` text should be appended to the plot title and y-axis label.
#' @param ggplot2_args (`ggplot2_args`) optional\cr object created by [teal.widgets::ggplot2_args()] with settings
#' for the module plot. For this module, this argument will only accept `ggplot2_args` object with `labs` list of
#' the following child elements: `title`, `subtitle`, `x`, `y`. No other elements are taken into account. The
#' argument is merged with option `teal.ggplot2_args` and with default module arguments (hard coded in the module
#' body).
#'
#' For more details, see the vignette: `vignette("custom-ggplot2-arguments", package = "teal.widgets")`.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_g_ipp()]
#'
#' @keywords internal
template_g_ipp <- function(dataname = "ANL",
paramcd,
arm_var,
arm_levels,
avalu_first,
paramcd_first,
aval_var = "AVAL",
avalu_var = "AVALU",
id_var = "USUBJID",
visit_var = "AVISIT",
base_var = lifecycle::deprecated(),
baseline_var = "BASE",
add_baseline_hline = FALSE,
separate_by_obs = FALSE,
ggplot2_args = teal.widgets::ggplot2_args(),
suppress_legend = FALSE,
add_avalu = TRUE) {
if (lifecycle::is_present(base_var)) {
baseline_var <- base_var
warning(
"The `base_var` argument of `template_g_ipp()` is deprecated as of teal.modules.clinical 0.8.16. ",
"Please use the `baseline_var` argument instead.",
call. = FALSE
)
}
checkmate::assert_string(dataname)
checkmate::assert_string(paramcd)
checkmate::assert_string(arm_var)
checkmate::assert_string(aval_var)
checkmate::assert_string(avalu_var)
checkmate::assert_string(id_var)
checkmate::assert_string(visit_var)
checkmate::assert_string(baseline_var)
checkmate::assert_flag(add_baseline_hline)
checkmate::assert_flag(separate_by_obs)
checkmate::assert_flag(suppress_legend)
checkmate::assert_flag(add_avalu)
y <- list()
# Data preprocessing
y$data <- substitute(
expr = anl <- df %>% droplevels(),
env = list(df = as.name(dataname))
)
title <- ifelse(
add_avalu,
sprintf("Individual Patient Plot for %s Values (%s) over Time", paramcd_first, avalu_first),
sprintf("Individual Patient Plot for %s Values over Time", paramcd_first)
)
y_axis <- ifelse(
add_avalu,
sprintf("%s (%s)", paramcd_first, avalu_first),
paramcd_first
)
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args,
module_plot = teal.widgets::ggplot2_args(
labs = list(
title = title,
x = "Visit",
y = y_axis,
subtitle = paste(arm_levels, collapse = ", ")
)
)
)
graph_list <- list()
graph_list <- add_expr(
graph_list,
substitute(
expr = {
plot <- h_g_ipp(
df = anl,
xvar = visit,
yvar = aval,
xlab = xlab_val,
ylab = ylab_val,
title = title_val,
subtitle = subtitle_val,
id_var = id,
add_baseline_hline = add_baseline_hline,
yvar_baseline = base
)
},
env = list(
xlab_val = all_ggplot2_args$labs$x,
ylab_val = all_ggplot2_args$labs$y,
title_val = all_ggplot2_args$labs$title,
subtitle_val = all_ggplot2_args$labs$subtitle,
paramcd = paramcd,
visit = visit_var,
aval = aval_var,
id = id_var,
add_baseline_hline = add_baseline_hline,
base = baseline_var,
avalu = avalu_var,
arm = arm_var
)
)
)
if (separate_by_obs) {
graph_list <- add_expr(
graph_list,
substitute(
expr = plot <- plot + ggplot2::facet_grid(rows = ggplot2::vars(id)),
env = list(id = as.name(id_var))
)
)
}
if (suppress_legend) {
graph_list <- add_expr(
graph_list,
substitute(
expr = {
plot <- plot + ggplot2::theme(legend.position = "none")
},
env = list(id = as.name(id_var))
)
)
}
graph_list <- add_expr(
graph_list,
quote(grid::grid.newpage())
)
graph_list <- add_expr(
graph_list,
quote(grid::grid.draw(plot))
)
y$graph <- bracket_expr(graph_list)
y
}
#' teal Module: Individual Patient Plots
#'
#' This module produces [ggplot2::ggplot()] type individual patient plots that display trends in parameter
#' values over time for each patient, using data with ADaM structure.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_g_ipp
#' @param arm_var ([teal.transform::choices_selected()])\cr object with
#' all available choices and preselected option for variable values that can be used as arm variable.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`ggplot`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_ipp(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied only to `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(nestcolor)
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl %>%
#' slice(1:20) %>%
#' df_explicit_na()
#' ADLB <- tmc_ex_adlb %>%
#' filter(USUBJID %in% ADSL$USUBJID) %>%
#' df_explicit_na() %>%
#' filter(AVISIT != "SCREENING")
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADLB <- data[["ADLB"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_ipp(
#' label = "Individual Patient Plot",
#' dataname = "ADLB",
#' arm_var = choices_selected(
#' value_choices(ADLB, "ARMCD"),
#' "ARM A"
#' ),
#' paramcd = choices_selected(
#' value_choices(ADLB, "PARAMCD"),
#' "ALT"
#' ),
#' aval_var = choices_selected(
#' variable_choices(ADLB, c("AVAL", "CHG")),
#' "AVAL"
#' ),
#' avalu_var = choices_selected(
#' variable_choices(ADLB, c("AVALU")),
#' "AVALU",
#' fixed = TRUE
#' ),
#' id_var = choices_selected(
#' variable_choices(ADLB, c("USUBJID")),
#' "USUBJID",
#' fixed = TRUE
#' ),
#' visit_var = choices_selected(
#' variable_choices(ADLB, c("AVISIT")),
#' "AVISIT"
#' ),
#' baseline_var = choices_selected(
#' variable_choices(ADLB, c("BASE")),
#' "BASE",
#' fixed = TRUE
#' ),
#' add_baseline_hline = FALSE,
#' separate_by_obs = FALSE
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_g_ipp <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
paramcd,
id_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "USUBJID"),
"USUBJID",
fixed = TRUE
),
visit_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVISIT"),
"AVISIT",
fixed = TRUE
),
aval_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVAL"),
"AVAL",
fixed = TRUE
),
avalu_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVALU"),
"AVALU",
fixed = TRUE
),
base_var = lifecycle::deprecated(),
baseline_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "BASE"),
"BASE",
fixed = TRUE
),
add_baseline_hline = FALSE,
separate_by_obs = FALSE,
suppress_legend = FALSE,
add_avalu = TRUE,
plot_height = c(1200L, 400L, 5000L),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()) {
if (lifecycle::is_present(base_var)) {
baseline_var <- base_var
warning(
"The `base_var` argument of `tm_g_ipp()` is deprecated as of teal.modules.clinical 0.8.16. ",
"Please use the `baseline_var` argument instead.",
call. = FALSE
)
} else {
base_var <- baseline_var # resolves missing argument error
}
message("Initializing tm_g_ipp")
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(id_var, "choices_selected")
checkmate::assert_class(visit_var, "choices_selected")
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(avalu_var, "choices_selected")
checkmate::assert_class(baseline_var, "choices_selected")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_flag(add_baseline_hline)
checkmate::assert_flag(separate_by_obs)
checkmate::assert_flag(suppress_legend)
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(ggplot2_args, "ggplot2_args")
assert_decorators(decorators, "plot")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_filter(arm_var, dataname = parentname, multiple = TRUE, include_vars = TRUE),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
avalu_var = cs_to_des_select(avalu_var, dataname = dataname),
id_var = cs_to_des_select(id_var, dataname = dataname),
visit_var = cs_to_des_select(visit_var, dataname = dataname),
baseline_var = cs_to_des_select(baseline_var, dataname = dataname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname)
)
module(
label = label,
server = srv_g_ipp,
ui = ui_g_ipp,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
label = label,
parentname = parentname,
plot_height = plot_height,
plot_width = plot_width,
ggplot2_args = ggplot2_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_g_ipp <- function(id, ...) {
a <- list(...) # module args
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$aval_var,
a$avalu_var,
a$id_var,
a$visit_var,
a$paramcd,
a$baseline_var
)
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::plot_with_settings_ui(id = ns("myplot")),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(
a[c("arm_var", "aval_var", "avalu_var", "id_var", "visit_var", "paramcd", "baseline_var")]
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Arm",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Parameter",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("visit_var"),
label = "Timepoint Variable",
data_extract_spec = a$visit_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Parameter values over Time",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("id_var"),
label = "Patient ID",
data_extract_spec = a$id_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("avalu_var"),
label = "Analysis Variable Unit",
data_extract_spec = a$avalu_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("baseline_var"),
label = "Baseline Parameter Values",
data_extract_spec = a$baseline_var,
is_single_dataset = is_single_dataset_value
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "plot")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional plot settings",
checkboxInput(
ns("add_baseline_hline"),
"Add reference lines at baseline value",
value = a$add_baseline_hline
),
checkboxInput(
ns("separate_by_obs"),
"Separate plots by ID",
value = a$separate_by_obs
),
checkboxInput(
ns("suppress_legend"),
"Suppress legend",
value = a$suppress_legend
),
checkboxInput(
ns("add_avalu"),
"Add unit value in title/y axis",
value = a$add_avalu
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_g_ipp <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
paramcd,
aval_var,
avalu_var,
id_var,
visit_var,
baseline_var,
plot_height,
plot_width,
label,
ggplot2_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
datasets = data,
data_extract = list(
arm_var = arm_var,
aval_var = aval_var,
avalu_var = avalu_var,
id_var = id_var,
paramcd = paramcd,
visit_var = visit_var,
baseline_var = baseline_var
),
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("A Parameter values over Time must be selected"),
avalu_var = shinyvalidate::sv_required("An Analysis Variable Unit must be selected"),
visit_var = shinyvalidate::sv_required("A Timepoint Variable must be selected"),
id_var = shinyvalidate::sv_required("A Patient ID must be selected"),
baseline_var = shinyvalidate::sv_required("Baseline Parameter Values must be selected")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required(message = "Please select Parameter filter."),
arm_var = shinyvalidate::sv_required(message = "Please select Arm filter.")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
join_keys = teal.data::join_keys(data),
data_extract = list(arm_var = arm_var, id_var = id_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
# Prepare the analysis environment (filter data, check data, populate envir).
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- anl_q()[[parentname]]
anl_filtered <- anl_q()[[dataname]]
anl_m <- anl_inputs()
input_arm_var <- unlist(arm_var$filter)["vars_selected"]
input_aval_var <- as.vector(anl_m$columns_source$aval_var)
input_avalu_var <- as.vector(anl_m$columns_source$avalu_var)
input_id_var <- as.vector(anl_m$columns_source$id_var)
input_visit_var <- as.vector(anl_m$columns_source$visit_var)
input_baseline_var <- as.vector(anl_m$columns_source$baseline_var)
input_paramcd <- unlist(paramcd$filter)["vars_selected"]
# validate inputs
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("STUDYID", input_id_var, input_arm_var),
anl = anl_filtered,
anlvars = c(
"STUDYID",
input_id_var,
input_arm_var,
input_aval_var,
input_avalu_var,
input_paramcd,
input_visit_var,
input_baseline_var
),
arm_var = input_arm_var
)
do.call(what = "validate_standard_inputs", validate_args)
NULL
})
# The R-code corresponding to the analysis.
all_q <- reactive({
validate_checks()
anl_m <- anl_inputs()
ANL <- anl_q()[["ANL"]]
teal::validate_has_data(ANL, 2)
arm_var <- unlist(arm_var$filter)["vars_selected"]
avalu_var <- as.vector(anl_m$columns_source$avalu_var)
paramcd <- unlist(paramcd$filter)["vars_selected"]
avalu_first <- as.character(ANL[[avalu_var]][1])
paramcd_first <- as.character(ANL[[paramcd]][1])
arm_levels <- levels(droplevels(ANL[[arm_var]]))
my_calls <- template_g_ipp(
dataname = "ANL",
aval_var = as.vector(anl_m$columns_source$aval_var),
avalu_var = avalu_var,
avalu_first = avalu_first,
id_var = as.vector(anl_m$columns_source$id_var),
visit_var = as.vector(anl_m$columns_source$visit_var),
baseline_var = as.vector(anl_m$columns_source$baseline_var),
add_baseline_hline = input$add_baseline_hline,
separate_by_obs = input$separate_by_obs,
suppress_legend = input$suppress_legend,
paramcd = paramcd,
paramcd_first = paramcd_first,
arm_var = arm_var,
arm_levels = arm_levels,
ggplot2_args = ggplot2_args,
add_avalu = input$add_avalu
)
teal.code::eval_code(anl_q(), as.expression(unlist(my_calls)))
})
# Outputs to render.
decorated_all_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "plot"),
expr = print(plot)
)
plot_r <- reactive(decorated_all_q()[["plot"]])
# Insert the plot into a plot with settings module from teal.widgets
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_all_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Individual Patient Plot",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.