Nothing
#' Teal Module: Regression Counts Summary
#'
#' Summarize results of a Poisson negative binomial regression that is result
#' of a generalized linear model of one (e.g. arm) or more covariates.
#'
#' @inheritParams template_arguments
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @param conf_level ([teal.transform::choices_selected()])\cr object with all available choices and
#' pre-selected option for confidence level, each within range of (0, 1).
#' @param rate_mean_method (`character`) method used to estimate the mean odds ratio. Either "emmeans" or "ppmeans"
#' (as in `summarize_glm_count()`).
#' @param distribution (`character`) value specifying the distribution used in the regression model
#' (Poisson: `"poisson"`, Quasi-Poisson: `"quasipoisson"`, negative binomial: `"negbin"`).
#' @param offset_var (`character`) a name of the numeric variable to be used as an offset?
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_glm_counts(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @details
#' * Teal module for [tern::summarize_glm_count()] analysis, that summarizes results of a
#' Poisson negative binomial regression.
#' * The arm and stratification variables are taken from the `parentname` data.
#' @seealso `summarize_glm_count()`
#' @inherit module_arguments return seealso
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' data <- within(teal_data(), {
#' ADSL <- tern::tern_ex_adsl
#' ADTTE <- tern::tern_ex_adtte
#' })
#'
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' arm_ref_comp <- list(
#' ACTARMCD = list(
#' ref = "ARM B",
#' comp = c("ARM A", "ARM C")
#' ),
#' ARM = list(
#' ref = "B: Placebo",
#' comp = c("A: Drug X", "C: Combination")
#' )
#' )
#'
#' ADSL <- data[["ADSL"]]
#' ADTTE <- data[["ADTTE"]]
#' # Initialize the teal app
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_glm_counts(
#' dataname = "ADTTE",
#' arm_var = choices_selected(
#' variable_choices(ADTTE, c("ARM", "ARMCD", "ACTARMCD")),
#' "ARMCD"
#' ),
#' arm_ref_comp = arm_ref_comp,
#' aval_var = choices_selected(
#' variable_choices(ADTTE, "AVAL"),
#' "AVAL"
#' ),
#' strata_var = choices_selected(
#' variable_choices(ADSL, "SEX"),
#' NULL
#' ),
#' offset_var = choices_selected(
#' variable_choices(ADSL, "AGE"),
#' NULL
#' ),
#' cov_var = choices_selected(
#' variable_choices(ADTTE, "SITEID"),
#' NULL
#' )
#' )
#' )
#' )
#'
#' if (interactive()) {
#' shinyApp(ui = app$ui, server = app$server)
#' }
#' @export
tm_t_glm_counts <- function(label = "Counts Module",
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
aval_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVAL"), "AVAL",
fixed = TRUE
),
arm_var,
strata_var,
rate_mean_method = c("emmeans", "ppmeans"),
distribution = c("negbin", "quasipoisson", "poisson"),
offset_var,
cov_var,
arm_ref_comp = NULL,
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_glm_counts")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
rate_mean_method <- match.arg(rate_mean_method)
distribution <- match.arg(distribution)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
cov_var = cs_to_des_select(cov_var, dataname = dataname),
offset_var = cs_to_des_select(offset_var, dataname = dataname),
strata_var = cs_to_des_select(strata_var, dataname = dataname)
)
teal::module(
label = label,
ui = ui_t_glm_counts,
server = srv_t_glm_counts,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
arm_ref_comp = arm_ref_comp,
label = label,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
ui_t_glm_counts <- function(id, ...) {
ns <- NS(id)
a <- list(...) # module args
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$offset_var,
a$cov_var,
a$aval_var
)
output <- teal.widgets::white_small_well(
teal.widgets::table_with_settings_ui(ns("table"))
)
forms <- tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
)
compare_treatments <- tags$div(
class = "arm-comp-box",
tags$label("Compare Treatments"),
bslib::input_switch(
id = ns("compare_arms"),
label = "Compare Treatments",
value = !is.null(a$arm_var)
),
conditionalPanel(
condition = paste0("input['", ns("compare_arms"), "']"),
tags$div(
uiOutput(ns("arms_buckets")), # from arm_ref_comp_observer
uiOutput(ns("helptext_ui")), # For feedback on comparisons
checkboxInput(
ns("combine_comp_arms"),
"Combine all comparison groups?",
value = FALSE
),
teal.transform::data_extract_ui(
id = ns("strata_var"),
label = "Stratify by",
data_extract_spec = a$strata_var,
is_single_dataset = is_single_dataset_value
),
checkboxInput(ns("add_total"), "Add All Patients column", value = a$add_total)
)
)
)
table_settings <- bslib::accordion_panel(
"Additional table settings",
teal.widgets::optionalSelectInput(
inputId = ns("conf_level"),
label = "Confidence Level",
choices = c(0.8, 0.9, 0.95),
selected = 0.95,
multiple = FALSE,
fixed = FALSE
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
)
teal.widgets::standard_layout(
output = output,
encoding = tags$div(
### Reporter
teal.reporter::add_card_button_ui(ns("add_reporter"), label = "Add Report Card"),
tags$br(), tags$br(),
###
tags$label("Encodings", class = "text-primary"), tags$br(),
teal.transform::data_extract_ui(
ns("arm_var"),
"Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Analysis Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
ns("cov_var"),
"Covariate(s)",
data_extract_spec = a$cov_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
ns("offset_var"),
"Offset variable",
data_extract_spec = a$offset_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("strata_var"),
label = "Stratify by",
data_extract_spec = a$strata_var,
is_single_dataset = is_single_dataset_value
),
compare_treatments,
shiny::selectInput(
ns("distribution"),
"Distribution",
choices = a$distribution
),
shiny::selectInput(
ns("rate_mean_method"),
"Rate method",
choices = a$rate_mean_method
),
table_settings,
),
forms = forms
)
}
srv_t_glm_counts <- function(id,
data,
filter_panel_api,
reporter,
dataname,
parentname,
arm_var,
aval_var,
offset_var,
cov_var,
strata_var,
arm_ref_comp,
label,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
# Input validation
iv_arm_ref <- arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = reactive(data()[[parentname]]),
arm_ref_comp = arm_ref_comp,
module = "tm_t_counts",
on_off = reactive(input$compare_arms)
)
list_data_extract <- list(
arm_var = arm_var,
aval_var = aval_var,
strata_var = strata_var,
cov_var = cov_var,
offset_var = offset_var
)
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list_data_extract,
datasets = data,
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("An analysis variable is required"),
arm_var = shinyvalidate::sv_required("A treatment variable is required")
)
)
## Data source merging
adsl_merge_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list_data_extract,
anl_name = "ANL"
)
output$helptext_ui <- renderUI({
req(selector_list()$arm_var()$select)
helpText("Multiple reference groups are automatically combined into a single group.")
})
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
if (isTRUE(input$compare_arms)) {
iv$add_validator(iv_arm_ref)
}
iv$add_rule("conf_level_coxph", shinyvalidate::sv_required("Please choose a hazard ratio confidence level"))
iv$add_rule(
"conf_level_coxph", shinyvalidate::sv_between(
0, 1,
message_fmt = "Hazard ratio confidence level must between 0 and 1"
)
)
iv$add_rule("conf_level_survfit", shinyvalidate::sv_required("Please choose a KM confidence level"))
iv$add_rule(
"conf_level_survfit", shinyvalidate::sv_between(
0, 1,
message_fmt = "KM confidence level must between 0 and 1"
)
)
iv$add_rule(
"probs_survfit",
~ if (!is.null(.) && .[1] == .[2]) "KM Estimate Percentiles cannot have a range of size 0"
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
## Merge data
anl_q <- reactive({
teal.code::eval_code(data(), as.expression(adsl_merge_inputs()$expr))
})
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- anl_q()[[parentname]]
anl_filtered <- anl_q()[[dataname]]
anl <- anl_q()[["ANL"]]
anl_m <- adsl_merge_inputs()
input_arm_var <- as.vector(anl_m$columns_source$arm_var)
input_strata_var <- as.vector(anl_m$columns_source$strata_var)
input_aval_var <- as.vector(anl_m$columns_source$aval_var)
# validate inputs
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var, input_strata_var),
anl = anl_filtered,
anlvars = c(
"USUBJID", "STUDYID", input_aval_var # , input_paramcd
),
arm_var = input_arm_var
)
# validate arm levels
if (length(input_arm_var) > 0 && length(unique(adsl_filtered[[input_arm_var]])) == 1) {
validate_args <- append(validate_args, list(min_n_levels_armvar = NULL))
}
if (isTRUE(input$compare_arms)) {
validate_args <- append(
validate_args,
list(ref_arm = unlist(input$buckets$Ref), comp_arm = unlist(input$buckets$Comp))
)
}
do.call(what = "validate_standard_inputs", validate_args)
# check that there is at least one record with no missing data
validate(shiny::need(
!all(is.na(anl[[input_aval_var]])),
"ANCOVA table cannot be calculated as all values are missing."
))
NULL
})
## Preprocessing the data: user specified
anl <- reactive({
within(req(anl_q()), {
ANL <- tern::df_explicit_na(ANL)
})
})
## Add basic specification for the table
basic_table <- reactive({
req(!is.null(input$buckets$Ref))
ami <- req(adsl_merge_inputs())
within(req(anl()),
{
lyt <- rtables::basic_table(show_colcounts = TRUE) %>%
rtables::split_cols_by(var, ref_group = ref_group, split_fun = tern::ref_group_position("first"))
},
ref_group = unlist(input$buckets$Ref),
var = as.vector(ami$columns_source$arm_var)
)
})
## Create covariates for the table
## Create tables
summarize_counts <- reactive({
ami <- req(adsl_merge_inputs())
offset_var <- as.vector(ami$columns_source$offset_var)
cov_var <- as.vector(ami$columns_source$cov_var)
arm_var <- as.vector(ami$columns_source$arm_var)
variables <- if (length(offset_var) && length(cov_var)) {
within(req(basic_table()),
{
variables <- list(arm = var, covariates = cov_var, offset_var = offset_var)
},
var = arm_var,
cov_var = cov_var,
offset_var = offset_var
)
} else if (!length(offset_var) && length(cov_var)) {
within(req(basic_table()),
{
variables <- list(arm = var, covariates = cov_var)
},
var = arm_var,
cov_var = cov_var
)
} else if (length(offset_var) && !length(cov_var)) {
within(req(basic_table()),
{
variables <- list(arm = var, offset_var = offset_var)
},
var = arm_var,
offset_var = offset_var
)
} else {
within(req(basic_table()),
{
variables <- list(arm = var)
},
var = arm_var
)
}
w <- within(variables,
{
lyt <- tern::summarize_glm_count(
lyt,
vars = var,
variables = variables,
conf_level = conf_level,
distribution = distribution,
rate_mean_method = rate_mean_method,
var_labels = "Adjusted (NB) exacerbation rate (per year)",
table_names = "adj-nb",
.stats = c("rate", "rate_ci", "rate_ratio", "rate_ratio_ci", "pval"),
.labels = c(
rate = "Rate", rate_ci = "Rate CI", rate_ratio = "Rate Ratio",
rate_ratio_ci = "Rate Ratio CI", pval = "p-value"
)
)
},
rate_mean_method = input$rate_mean_method,
var = as.vector(ami$columns_source$aval_var),
conf_level = as.numeric(input$conf_level),
distribution = input$distribution
)
})
# Create output table
table_out <- reactive({
req(summarize_counts())
table <- within(req(summarize_counts()), {
table <- rtables::build_table(
lyt = lyt,
df = ANL
)
})
validate(need(!inherits(table, "try-error"), "Model couldn't be fitted."))
table
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = table_out,
decorators = select_decorators(decorators, "table"),
expr = table
)
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(id = "table", table_r = table_r)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Time To Count Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::add_card_button_srv("add_reporter", reporter = reporter, card_fun = card_fun)
}
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.