Nothing
#' Template: Logistic Regression
#'
#' Creates a valid expression to generate a logistic regression table.
#'
#' @inheritParams template_arguments
#' @inheritParams tern::tidy.glm
#' @param arm_var (`character`)\cr variable names that can be used as `arm_var`. To fit a logistic model with no
#' arm/treatment variable, set to `NULL`.
#' @param topleft (`character`)\cr text to use as top-left annotation in the table.
#' @param interaction_var (`character`)\cr names of the variables that can be used for interaction variable selection.
#' @param responder_val (`character`)\cr values of the responder variable corresponding with a successful response.
#' @param paramcd `r lifecycle::badge("deprecated")` The `paramcd` argument is not used in this function.
#' @param label_paramcd (`character`)\cr label of response parameter value to print in the table title.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_logistic()]
#'
#' @keywords internal
template_logistic <- function(dataname,
arm_var,
aval_var,
paramcd = lifecycle::deprecated(),
label_paramcd,
cov_var,
interaction_var,
ref_arm,
comp_arm,
topleft = "Logistic Regression",
conf_level = 0.95,
combine_comp_arms = FALSE,
responder_val = c("CR", "PR"),
at = NULL,
basic_table_args = teal.widgets::basic_table_args()) {
if (lifecycle::is_present(paramcd)) {
lifecycle::deprecate_warn("0.8.16", "template_logistic(paramcd)")
}
# Common assertion no matter if arm_var is NULL or not.
checkmate::assert_string(dataname)
checkmate::assert_string(aval_var)
checkmate::assert_string(label_paramcd, null.ok = TRUE)
checkmate::assert_string(topleft, null.ok = TRUE)
checkmate::assert_character(cov_var, null.ok = TRUE)
checkmate::assert_string(interaction_var, null.ok = TRUE)
y <- list()
data_pipe <- list()
data_list <- list()
# Conditional assertion depends on if arm_var isn't NULL.
if (!is.null(arm_var)) {
checkmate::assert_string(arm_var)
checkmate::assert_flag(combine_comp_arms)
ref_arm_val <- paste(ref_arm, collapse = "/")
y$arm_lab <- substitute(
expr = arm_var_lab <- teal.data::col_labels(anl[arm_var], fill = FALSE),
env = list(anl = as.name(dataname), arm_var = arm_var)
)
# Start to build data when arm_var is not NULL.
data_pipe <- add_expr(
data_pipe,
prepare_arm(
dataname = dataname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
ref_arm_val = ref_arm_val
)
)
if (combine_comp_arms) {
data_pipe <- add_expr(
data_pipe,
substitute_names(
expr = dplyr::mutate(arm_var = combine_levels(x = arm_var, levels = comp_arm)),
names = list(arm_var = as.name(arm_var)),
others = list(comp_arm = comp_arm)
)
)
}
data_list <- add_expr(
data_list,
substitute(
expr = ANL <- data_pipe,
env = list(data_pipe = pipe_expr(data_pipe))
)
)
}
data_list <- add_expr(
data_list,
substitute(
expr = ANL <- df %>%
dplyr::mutate(Response = aval_var %in% responder_val) %>%
df_explicit_na(na_level = "_NA_"),
env = list(df = as.name("ANL"), aval_var = as.name(aval_var), responder_val = responder_val)
)
)
y$data <- bracket_expr(data_list)
if (!is.null(arm_var)) {
y$relabel <- substitute(
expr = teal.data::col_labels(ANL[arm_var]) <- arm_var_lab,
env = list(arm_var = arm_var)
)
}
model_list <- list()
model_list <- if (is.null(interaction_var)) {
add_expr(
model_list,
substitute(
expr = fit_logistic(
ANL,
variables = list(response = "Response", arm = arm_var, covariates = cov_var)
),
env = list(arm_var = arm_var, cov_var = cov_var)
)
)
} else {
add_expr(
model_list,
substitute(
expr = fit_logistic(
ANL,
variables = list(
response = "Response", arm = arm_var, covariates = cov_var,
interaction = interaction_var
)
),
env = list(arm_var = arm_var, cov_var = cov_var, interaction_var = interaction_var)
)
)
}
model_list <- if (is.null(interaction_var)) {
add_expr(
model_list,
substitute(
expr = broom::tidy(conf_level = conf_level),
env = list(conf_level = conf_level)
)
)
} else {
add_expr(
model_list,
substitute(
expr = broom::tidy(conf_level = conf_level, at = at),
env = list(conf_level = conf_level, at = at)
)
)
}
model_list <- add_expr(model_list, quote(df_explicit_na(na_level = "_NA_")))
y$model <- substitute(
expr = mod <- model_pipe,
env = list(model_pipe = pipe_expr(model_list))
)
layout_list <- list()
basic_title <- if (length(responder_val) > 1) {
paste(
"Summary of Logistic Regression Analysis for", label_paramcd, "for",
paste(utils::head(responder_val, -1), collapse = ", "),
"and", utils::tail(responder_val, 1), "Responders"
)
} else {
paste("Summary of Logistic Regression Analysis for", label_paramcd, "for", responder_val, "Responders")
}
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(title = basic_title)
)
)
y$table <- substitute(
expr = {
table <- expr_basic_table_args %>%
summarize_logistic(
conf_level = conf_level,
drop_and_remove_str = "_NA_"
) %>%
rtables::append_topleft(topleft) %>%
rtables::build_table(df = mod)
},
env = list(
expr_basic_table_args = parsed_basic_table_args,
conf_level = conf_level,
topleft = topleft
)
)
y
}
#' teal Module: Logistic Regression
#'
#' This module produces a multi-variable logistic regression table consistent with the TLG Catalog template
#' `LGRT02` available [here](https://insightsengineering.github.io/tlg-catalog/stable/tables/efficacy/lgrt02.html).
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_logistic
#' @param arm_var ([teal.transform::choices_selected()] or `NULL`)\cr object
#' with all available choices and preselected option for variable names that can be used as `arm_var`. This defines
#' the grouping variable(s) in the results table. If there are two elements selected for `arm_var`, the second
#' variable will be nested under the first variable. If `NULL`, no arm/treatment variable is included in the
#' logistic model.
#' @param avalc_var ([teal.transform::choices_selected()])\cr object with all
#' available choices and preselected option for the analysis variable (categorical).
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_logistic(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADRS <- tmc_ex_adrs %>%
#' filter(PARAMCD %in% c("BESRSPI", "INVET"))
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADRS <- data[["ADRS"]]
#'
#' arm_ref_comp <- list(
#' ACTARMCD = list(
#' ref = "ARM B",
#' comp = c("ARM A", "ARM C")
#' ),
#' ARM = list(
#' ref = "B: Placebo",
#' comp = c("A: Drug X", "C: Combination")
#' )
#' )
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_logistic(
#' label = "Logistic Regression",
#' dataname = "ADRS",
#' arm_var = choices_selected(
#' choices = variable_choices(ADRS, c("ARM", "ARMCD")),
#' selected = "ARM"
#' ),
#' arm_ref_comp = arm_ref_comp,
#' paramcd = choices_selected(
#' choices = value_choices(ADRS, "PARAMCD", "PARAM"),
#' selected = "BESRSPI"
#' ),
#' cov_var = choices_selected(
#' choices = c("SEX", "AGE", "BMRKR1", "BMRKR2"),
#' selected = "SEX"
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_logistic <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var = NULL,
arm_ref_comp = NULL,
paramcd,
cov_var = NULL,
avalc_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVALC"), "AVALC",
fixed = TRUE
),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_logistic")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected", null.ok = TRUE)
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(cov_var, "choices_selected", null.ok = TRUE)
checkmate::assert_class(avalc_var, "choices_selected")
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_list(arm_ref_comp, names = "named", null.ok = TRUE)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = `if`(is.null(arm_var), NULL, cs_to_des_select(arm_var, dataname = parentname)),
paramcd = cs_to_des_filter(paramcd, dataname = dataname),
cov_var = cs_to_des_select(cov_var, dataname = dataname, multiple = TRUE),
avalc_var = cs_to_des_select(avalc_var, dataname = dataname)
)
module(
label = label,
server = srv_t_logistic,
ui = ui_t_logistic,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
arm_ref_comp = arm_ref_comp,
label = label,
dataname = dataname,
parentname = parentname,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_logistic <- function(id, ...) {
a <- list(...)
if (!is.null(a$arm_var)) {
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$paramcd,
a$avalc_var,
a$cov_var
)
} else {
is_single_dataset_value <- teal.transform::is_single_dataset(
a$paramcd,
a$avalc_var,
a$cov_var
)
}
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
teal.widgets::table_with_settings_ui(ns("table"))
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "paramcd", "avalc_var", "cov_var")]),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Endpoint",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("avalc_var"),
label = "Analysis Variable",
data_extract_spec = a$avalc_var,
is_single_dataset = is_single_dataset_value
),
selectInput(
ns("responders"),
"Responders",
choices = c("CR", "PR"),
selected = c("CR", "PR"),
multiple = TRUE
),
if (!is.null(a$arm_var)) {
tags$div(
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
uiOutput(ns("arms_buckets")),
checkboxInput(
ns("combine_comp_arms"),
"Combine all comparison groups?",
value = FALSE
)
)
},
teal.transform::data_extract_ui(
id = ns("cov_var"),
label = "Covariates",
data_extract_spec = a$cov_var,
is_single_dataset = is_single_dataset_value
),
uiOutput(ns("interaction_variable")),
uiOutput(ns("interaction_input")),
teal.widgets::optionalSelectInput(
inputId = ns("conf_level"),
label = tags$p(
"Confidence level for ",
tags$span(class = "text-primary", "Coxph"),
" (Hazard Ratio)",
sep = ""
),
a$conf_level$choices,
a$conf_level$selected,
multiple = FALSE,
fixed = a$conf_level$fixed
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table"))
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_logistic <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
arm_ref_comp,
paramcd,
avalc_var,
cov_var,
label,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
# Observer to update reference and comparison arm input options.
iv_arco <- arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = reactive(data()[[parentname]]),
arm_ref_comp = arm_ref_comp,
module = "tm_t_logistic"
)
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
paramcd = paramcd,
avalc_var = avalc_var,
cov_var = cov_var
),
datasets = data,
select_validation_rule = list(
arm_var = shinyvalidate::sv_required("Treatment Variable is empty"),
avalc_var = shinyvalidate::sv_required("Analysis variable is empty"),
cov_var = shinyvalidate::sv_required("`Covariates` field is empty")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required("`Select Endpoint` field is empty")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("responders", shinyvalidate::sv_required("`Responders` field is empty"))
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level."))
iv$add_rule("conf_level", shinyvalidate::sv_between(
0, 1,
message_fmt = "Confdence level must be between {left} and {right}."
))
iv$add_validator(iv_arco)
# Conditional validator for interaction values.
iv_int <- shinyvalidate::InputValidator$new()
iv_int$condition(
~ length(input$interaction_var) > 0L &&
is.numeric(merged$anl_q()[["ANL"]][[input$interaction_var]])
)
iv_int$add_rule("interaction_values", shinyvalidate::sv_required(
"If interaction is specified the level should be entered."
))
iv_int$add_rule(
"interaction_values",
~ if (anyNA(as_numeric_from_comma_sep_str(.))) {
"Interaction levels are invalid."
}
)
iv_int$add_rule(
"interaction_values",
~ if (any(duplicated(as_numeric_from_comma_sep_str(.)))) {
"Interaction levels must be unique."
}
)
iv$add_validator(iv_int)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
selector_list = selector_list,
datasets = data,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
# Because the AVALC values depends on the selected PARAMCD.
observeEvent(merged$anl_input_r(), {
avalc_var <- merged$anl_input_r()$columns_source$avalc_var
if (nrow(merged$anl_q()[["ANL"]]) == 0) {
responder_choices <- c("CR", "PR")
responder_sel <- c("CR", "PR")
} else {
if (length(avalc_var) == 0) {
return(NULL)
}
responder_choices <- unique(merged$anl_q()[["ANL"]][[avalc_var]])
responder_sel <- intersect(responder_choices, isolate(input$responders))
}
updateSelectInput(
session, "responders",
choices = responder_choices,
selected = responder_sel
)
})
output$interaction_variable <- renderUI({
cov_var <- as.vector(merged$anl_input_r()$columns_source$cov_var)
if (length(cov_var) > 0) {
teal.widgets::optionalSelectInput(
session$ns("interaction_var"),
label = "Interaction",
choices = cov_var,
selected = NULL,
multiple = FALSE
)
} else {
NULL
}
})
output$interaction_input <- renderUI({
interaction_var <- input$interaction_var
if (length(interaction_var) > 0) {
if (is.numeric(merged$anl_q()[["ANL"]][[interaction_var]])) {
tagList(
textInput(
session$ns("interaction_values"),
label = sprintf("Specify %s values (comma delimited) for treatment ORs calculation:", interaction_var),
value = as.character(stats::median(merged$anl_q()[["ANL"]][[interaction_var]]))
)
)
}
} else {
NULL
}
})
validate_checks <- reactive({
adsl_filtered <- anl_q()[[parentname]]
anl_filtered <- anl_q()[[dataname]]
validate_inputs(iv_r())
input_arm_var <- as.vector(merged$anl_input_r()$columns_source$arm_var)
input_avalc_var <- as.vector(merged$anl_input_r()$columns_source$avalc_var)
input_cov_var <- as.vector(merged$anl_input_r()$columns_source$cov_var)
input_paramcd <- unlist(paramcd$filter)["vars_selected"]
input_interaction_var <- input$interaction_var
input_interaction_at <- input_interaction_var[input_interaction_var %in% input_cov_var]
at_values <- as_numeric_from_comma_sep_str(input$interaction_values)
# validate inputs
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_paramcd, input_avalc_var, input_cov_var),
arm_var = input_arm_var,
ref_arm = unlist(input$buckets$Ref),
comp_arm = unlist(input$buckets$Comp),
min_nrow = 4
)
# validate arm levels
if (!is.null(arm_var)) {
if (length(input_arm_var) > 0 && length(unique(adsl_filtered[[input_arm_var]])) == 1) {
validate_args <- append(validate_args, list(min_n_levels_armvar = NULL))
}
do.call(what = "validate_standard_inputs", validate_args)
arm_n <- base::table(merged$anl_q()[["ANL"]][[input_arm_var]])
anl_arm_n <- if (input$combine_comp_arms) {
c(sum(arm_n[unlist(input$buckets$Ref)]), sum(arm_n[unlist(input$buckets$Comp)]))
} else {
c(sum(arm_n[unlist(input$buckets$Ref)]), arm_n[unlist(input$buckets$Comp)])
}
validate(shiny::need(
all(anl_arm_n >= 2),
"Each treatment group should have at least 2 records."
))
}
# validate covariate has at least two levels
validate(
need(
all(
vapply(
merged$anl_q()[["ANL"]][input_cov_var],
FUN = function(x) {
length(unique(x)) > 1
},
logical(1)
)
),
"All covariates need to have at least two levels"
)
)
})
# Generate r code for the analysis.
all_q <- reactive({
validate_checks()
ANL <- merged$anl_q()[["ANL"]]
label_paramcd <- get_paramcd_label(ANL, paramcd)
paramcd <- as.character(unique(ANL[[unlist(paramcd$filter)["vars_selected"]]]))
interaction_var <- input$interaction_var
interaction_flag <- length(interaction_var) != 0
at_values <- as_numeric_from_comma_sep_str(input$interaction_values)
at_flag <- interaction_flag && is.numeric(ANL[[interaction_var]])
cov_var <- names(merged$anl_input_r()$columns_source$cov_var)
calls <- template_logistic(
dataname = "ANL",
arm_var = names(merged$anl_input_r()$columns_source$arm_var),
aval_var = names(merged$anl_input_r()$columns_source$avalc_var),
label_paramcd = label_paramcd,
cov_var = if (length(cov_var) > 0) cov_var else NULL,
interaction_var = if (interaction_flag) interaction_var else NULL,
ref_arm = unlist(input$buckets$Ref),
comp_arm = unlist(input$buckets$Comp),
combine_comp_arms = input$combine_comp_arms,
topleft = paramcd,
conf_level = as.numeric(input$conf_level),
at = if (at_flag) at_values else NULL,
responder_val = input$responders,
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(calls))
})
# Decoration of table output.
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Logistic Regression Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.