Nothing
#' Telescoping sampling of a Bayesian finite Poisson mixture with a
#' prior on the number of components K.
#'
#' @description
#' * The MCMC scheme is implemented as suggested in Frühwirth-Schnatter et al (2021).
#' * The priors on the model parameters are specified as in
#' Frühwirth-Schnatter et al (2021) and Früwirth-Schnatter and
#' Malsiner-Walli (2019), see the vignette for details and notation.
#'
#' @param y A numeric matrix; containing the data.
#' @param S A numeric matrix; containing the initial cluster
#' assignments.
#' @param mu A numeric matrix; containing the initial cluster-specific
#' rate values.
#' @param eta A numeric vector; containing the initial cluster sizes.
#' @param a0 A numeric vector; hyperparameter of the prior on the rate \eqn{\mu}.
#' @param b0 A numeric vector; hyperparameter of the prior on the rate \eqn{\mu}.
#' @param h0 A numeric vector; hyperparameter of the prior on the rate \eqn{\mu}.
#' @param H0 A numeric vector; hyperparameter of the prior on the rate \eqn{\mu}.
#' @param M A numeric scalar; specifying the number of recorded
#' iterations.
#' @param burnin A numeric scalar; specifying the number of burn-in
#' iterations.
#' @param thin A numeric scalar; specifying the thinning used for the
#' iterations.
#' @param Kmax A numeric scalar; the maximum number of components.
#' @param G A character string; either `"MixDynamic"` or `"MixStatic"`.
#' @param priorOnK A named list; providing the prior on the number of components K, see [priorOnK_spec()].
#' @param priorOnWeights A named list; providing the prior on the mixture weights.
#' @param verbose A logical; indicating if some intermediate clustering
#' results should be printed.
#' @return A named list containing:
#' * `"Mu"`: sampled rate \eqn{\mu}.
#' * `"Eta"`: sampled weights.
#' * `"S"`: sampled assignments.
#' * `"Nk"`: number of observations assigned to the different components, for each iteration.
#' * `"K"`: sampled number of components.
#' * `"Kplus"`: number of filled, i.e., non-empty components, for each iteration.
#' * `"e0"`: sampled Dirichlet parameter of the prior on the weights (if \eqn{e_0} is random).
#' * `"alpha"`: sampled Dirichlet parameter of the prior on the weights (if \eqn{\alpha} is random).
#' * `"acc"`: logical vector indicating acceptance in the Metropolis-Hastings step when sampling either e0 or \eqn{\alpha}.
#'
#' @examples
#' N <- 200
#' z <- sample(1:2, N, prob = c(0.5, 0.5), replace = TRUE)
#' y <- rpois(N, c(1, 6)[z])
#'
#' M <- 200
#' thin <- 1
#' burnin <- 100
#'
#' Kmax <- 50
#' Kinit <- 10
#'
#' G <- "MixDynamic"
#' priorOnAlpha <- priorOnAlpha_spec("gam_1_2")
#' priorOnK <- priorOnK_spec("BNB_143")
#'
#' a0 <- 0.1
#' h0 <- 0.5
#' b0 <- a0/mean(y)
#' H0 <- h0/b0
#'
#' cl_y <- kmeans(y, centers = Kinit, nstart = 100)
#' S_0 <- cl_y$cluster
#' mu_0 <- t(cl_y$centers)
#' eta_0 <- rep(1/Kinit, Kinit)
#'
#' result <- samplePoisMixture(
#' y, S_0, mu_0, eta_0,
#' a0, b0, h0, H0,
#' M, burnin, thin, Kmax,
#' G, priorOnK, priorOnAlpha)
#'
#' K <- result$K
#' Kplus <- result$Kplus
#'
#' plot(K, type = "l", ylim = c(0, max(K)),
#' xlab = "iteration", main = "",
#' ylab = expression("K" ~ "/" ~ K["+"]), col = 1)
#' lines(Kplus, col = 2)
#' legend("topright", legend = c("K", expression(K["+"])),
#' col = 1:2, lty = 1, box.lwd = 0)
#'
samplePoisMixture <-
function(y, S, mu, eta, a0, b0, h0, H0,
M, burnin, thin, Kmax,
G = c("MixDynamic", "MixStatic"),
priorOnK, priorOnWeights,
verbose = FALSE) {
y <- as.matrix(y)
## initial number of componens
K_j <- length(eta)
## prior on K and weights
log_pK <- priorOnK$log_pK
G <- match.arg(G)
if (G == "MixDynamic") {
log_pAlpha <- priorOnWeights$log_pAlpha
a_alpha <- priorOnWeights$param$a_alpha
b_alpha <- priorOnWeights$param$b_alpha
alpha <- priorOnWeights$param$alpha
e0 <- alpha / K_j
} else {
e0 <- priorOnWeights$param$e0
alpha <- e0 * K_j
log_p_e0 <- priorOnWeights$log_p_e0
}
s0_proposal <- priorOnWeights$param$s0_proposal
N <- nrow(y) # number of observations
r <- ncol(y) # number of dimensions
## initializing current values
eta_j <- eta
mu_j <- mu
b0_j <- b0
S_j <- S
Nk_j <- tabulate(S_j, K_j)
Kp_j <- sum(Nk_j != 0) # number of nonempty components
acc <- FALSE
## generating matrices for storing the draws:
result <- list(Eta = matrix(NA_real_, M, Kmax),
Mu = array(NA_real_, dim = c(M, r, Kmax)),
b0 = array(NA_real_, dim = c(M, r)),
Nk = matrix(NA_integer_, M, Kmax),
S = matrix(NA_integer_, M, N),
K = rep(NA_integer_, M),
Kp = rep(0L, M),
mixlik = rep(0, M),
mixprior = rep(0, M),
nonnormpost = rep(0, M),
nonnormpost_mode = vector("list", Kmax),
e0 = rep(NA_real_, M),
alpha = rep(NA_real_, M),
acc = rep(NA, M)
)
## Initialising the result objects
for (k in 1:Kmax) {
result$nonnormpost_mode[[k]] <- list(nonnormpost = -(10)^18)
}
##---------------------- simulation ----------------------------------------------
s <- 1
m <- 1
Mmax <- M * thin
while (m <= Mmax || m <= burnin) {
if (verbose && !(m%%1000)) {
cat("\n", m, " ", Nk_j)
}
if (m == burnin) {
m <- 1
burnin <- 0
}
## first step: classify observations and determine new partition
mat <- sapply(1:K_j, function(k) eta_j[k] * ((mu_j[k])^y[, 1]) * exp(-mu_j[k]))
S_j <- apply(mat, 1, function(x) sample(1:K_j, 1, prob = x, replace = T))
## determine P
Nk_j <- tabulate(S_j, K_j) #length(Nk_j)=K_j
Kp_j <- sum(Nk_j != 0)
## reorder the components
perm <- c(which(Nk_j > 0), which(Nk_j == 0))
mu_j <- mu_j[, perm, drop = FALSE] #length(mu_j[1,])=K_j
S_ <- rep(FALSE, N)
for (i in 1:length(perm)) {
S_[S_j == i] <- which(perm == i)
}
S_j <- S_
Nk_j <- tabulate(S_j, Kp_j) #length(Nk_j)=Kp_j
## second step: parameter simulation conditional on partition P=(N_1,...,N_K+):
## (2a) update parameters of filled components
mu_j[1, 1:Kp_j] <- sapply(1:Kp_j, function(k) {
rgamma(1, shape = a0 + Nk_j[k] * mean(y[S_j == k, ]), rate = b0 + Nk_j[k])
})
## storing the moments for clustering the draws in the point process representation
mean_yk <- matrix(sapply(1:Kp_j, function(k) colMeans(y[S_j == k, , drop = FALSE])), ncol = Kp_j)
ak <- as.vector(a0) + as.vector(Nk_j * mean_yk)
bk <- as.vector(b0) + as.vector(Nk_j)
## (2b) sample hyperparameters conditional on P
## (i): sample b0
b0 <- rgamma(1, shape = h0 + Kp_j * a0, rate = H0 + sum(mu_j[1, 1:Kp_j])) #ATTENTION!Only for learnK
## third step: sample K and alpha (e0) conditional on partition
if (G == "MixDynamic") {
## If e0=alpha/K (=dependent on K) (3a) Sample K
K_j <- sampleK_alpha(Kp_j, Kmax, Nk_j, alpha, log_pK)
## (3b) Sample alpha, if alpha~p(a_alpha,b_alpha)
value <- sampleAlpha(N, Nk_j, K_j, alpha, s0_proposal, log_pAlpha)
alpha <- value$alpha
e0 <- alpha / K_j
acc <- value$acc
} else {
## If e0 fixed or e0~G(a_e,b_e) (independent of K): (3a*) Sample K
K_j <- sampleK_e0(Kp_j, Kmax, log_pK, log_p_e0, e0, N)
## (3b*) Sample e0, if e0~G(a_e,b_e) (independent of K)
value <- sampleE0(K_j, Kp_j, N, Nk_j, s0_proposal, e0, log_p_e0)
e0 <- value$e0
alpha <- e0 * K_j
acc <- value$acc
}
## fourth step: add empty components conditional on K
## (4a) Add/remove empty components
if (K_j > Kp_j) {
Nk_j <- c(Nk_j[1:Kp_j], rep(0, (K_j - Kp_j)))
mu_j <- cbind(mu_j[, 1:Kp_j, drop = FALSE], matrix(0, r, K_j - Kp_j))
mu_j[, (Kp_j + 1):K_j] <- rgamma(K_j - Kp_j, shape = a0, rate = b0)
} else {
mu_j <- mu_j[, 1:K_j, drop = FALSE]
}
## (4b): Sample eta_j:
ek <- e0 + Nk_j
eta_j <- MCMCpack::rdirichlet(1, ek)
## fifth step: evaluating the mixture likelihood and storing the values
## evaluating the mixture likelihood
mat_neu <- sapply(1:K_j, function(k) eta_j[k] * dpois(y, lambda = mu_j[, k], log = FALSE))
mixlik_j <- sum(log(rowSums(mat_neu)))
## evaluating the mixture prior
mixprior_j <- log(MCMCpack::ddirichlet(as.vector(eta_j), rep(e0, K_j))) + sum(dgamma(mu_j, shape = a0,
rate = b0, log = TRUE)) + dgamma(b0, shape = h0, rate = H0) + log_pK(K_j)
if (burnin == 0) {
result$mixlik[m] <- mixlik_j
result$mixprior[m] <- mixprior_j
result$nonnormpost[m] <- result$mixlik[m] + result$mixprior[m]
}
## storing the nonnormalized posterior for having good starting
## points for clustering the draws in the point process repres.
if ((burnin == 0) && (result$nonnormpost[m] > result$nonnormpost_mode[[Kp_j]]$nonnormpost)) {
result$nonnormpost_mode[[Kp_j]] <- list(nonnormpost = result$nonnormpost[m],
mu = mu_j[, Nk_j != 0],
mean_muk = ak/bk,
var_muk = ak/(bk^2),
eta = eta_j)
}
## storing the results
if ((burnin == 0) && !(m%%thin)) {
result$Mu[m/thin, , 1:K_j] <- mu_j
result$Eta[m/thin, 1:K_j] <- eta_j
result$b0[m/thin, ] <- b0
result$S[m/thin, ] <- S_j
result$Nk[m/thin, 1:K_j] <- Nk_j
result$K[m/thin] <- K_j
result$Kplus[m/thin] <- Kp_j
result$e0[m/thin] <- e0
result$alpha[m/thin] <- alpha
result$acc[m/thin] <- acc
}
m <- m + 1
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.