R/h_map_for_count_abnormal.R

Defines functions h_map_for_count_abnormal

Documented in h_map_for_count_abnormal

#' Helper function to create a map data frame for `trim_levels_to_map()`
#'
#' @description `r lifecycle::badge("stable")`
#'
#' Helper function to create a map data frame from the input dataset, which can be used as an argument in the
#' `trim_levels_to_map` split function. Based on different method, the map is constructed differently.
#'
#' @inheritParams argument_convention
#' @param abnormal (named `list`)\cr identifying the abnormal range level(s) in `df`. Based on the levels of
#'   abnormality of the input dataset, it can be something like `list(Low = "LOW LOW", High = "HIGH HIGH")` or
#'   `abnormal = list(Low = "LOW", High = "HIGH"))`
#' @param method (`string`)\cr indicates how the returned map will be constructed. Can be `"default"` or `"range"`.
#'
#' @return A map `data.frame`.
#'
#' @note If method is `"default"`, the returned map will only have the abnormal directions that are observed in the
#'   `df`, and records with all normal values will be excluded to avoid error in creating layout. If method is
#'   `"range"`, the returned map will be based on the rule that at least one observation with low range > 0
#'   for low direction and at least one observation with high range is not missing for high direction.
#'
#' @examples
#' adlb <- df_explicit_na(tern_ex_adlb)
#'
#' h_map_for_count_abnormal(
#'   df = adlb,
#'   variables = list(anl = "ANRIND", split_rows = c("LBCAT", "PARAM")),
#'   abnormal = list(low = c("LOW"), high = c("HIGH")),
#'   method = "default",
#'   na_str = "<Missing>"
#' )
#'
#' df <- data.frame(
#'   USUBJID = c(rep("1", 4), rep("2", 4), rep("3", 4)),
#'   AVISIT = c(
#'     rep("WEEK 1", 2),
#'     rep("WEEK 2", 2),
#'     rep("WEEK 1", 2),
#'     rep("WEEK 2", 2),
#'     rep("WEEK 1", 2),
#'     rep("WEEK 2", 2)
#'   ),
#'   PARAM = rep(c("ALT", "CPR"), 6),
#'   ANRIND = c(
#'     "NORMAL", "NORMAL", "LOW",
#'     "HIGH", "LOW", "LOW", "HIGH", "HIGH", rep("NORMAL", 4)
#'   ),
#'   ANRLO = rep(5, 12),
#'   ANRHI = rep(20, 12)
#' )
#' df$ANRIND <- factor(df$ANRIND, levels = c("LOW", "HIGH", "NORMAL"))
#' h_map_for_count_abnormal(
#'   df = df,
#'   variables = list(
#'     anl = "ANRIND",
#'     split_rows = c("PARAM"),
#'     range_low = "ANRLO",
#'     range_high = "ANRHI"
#'   ),
#'   abnormal = list(low = c("LOW"), high = c("HIGH")),
#'   method = "range",
#'   na_str = "<Missing>"
#' )
#'
#' @export
h_map_for_count_abnormal <- function(df,
                                     variables = list(
                                       anl = "ANRIND",
                                       split_rows = c("PARAM"),
                                       range_low = "ANRLO",
                                       range_high = "ANRHI"
                                     ),
                                     abnormal = list(low = c("LOW", "LOW LOW"), high = c("HIGH", "HIGH HIGH")),
                                     method = c("default", "range"),
                                     na_str = "<Missing>") {
  method <- match.arg(method)
  checkmate::assert_subset(c("anl", "split_rows"), names(variables))
  checkmate::assert_false(anyNA(df[variables$split_rows]))
  assert_df_with_variables(df,
    variables = list(anl = variables$anl, split_rows = variables$split_rows),
    na_level = na_str
  )
  assert_df_with_factors(df, list(val = variables$anl))
  assert_valid_factor(df[[variables$anl]], any.missing = FALSE)
  assert_list_of_variables(variables)
  checkmate::assert_list(abnormal, types = "character", len = 2)

  # Drop usued levels from df as they are not supposed to be in the final map
  df <- droplevels(df)

  normal_value <- setdiff(levels(df[[variables$anl]]), unlist(abnormal))

  # Based on the understanding of clinical data, there should only be one level of normal which is "NORMAL"
  checkmate::assert_vector(normal_value, len = 1)

  # Default method will only have what is observed in the df, and records with all normal values will be excluded to
  # avoid error in layout building.
  if (method == "default") {
    df_abnormal <- subset(df, df[[variables$anl]] %in% unlist(abnormal))
    map <- unique(df_abnormal[c(variables$split_rows, variables$anl)])
    map_normal <- unique(subset(map, select = variables$split_rows))
    map_normal[[variables$anl]] <- normal_value
    map <- rbind(map, map_normal)
  } else if (method == "range") {
    # range method follows the rule that at least one observation with ANRLO > 0 for low
    # direction and at least one observation with ANRHI is not missing for high direction.
    checkmate::assert_subset(c("range_low", "range_high"), names(variables))
    checkmate::assert_subset(c("LOW", "HIGH"), toupper(names(abnormal)))

    assert_df_with_variables(df,
      variables = list(
        range_low = variables$range_low,
        range_high = variables$range_high
      )
    )

    # Define low direction of map
    df_low <- subset(df, df[[variables$range_low]] > 0)
    map_low <- unique(df_low[variables$split_rows])
    low_levels <- unname(unlist(abnormal[toupper(names(abnormal)) == "LOW"]))
    low_levels_df <- as.data.frame(low_levels)
    colnames(low_levels_df) <- variables$anl
    low_levels_df <- do.call("rbind", replicate(nrow(map_low), low_levels_df, simplify = FALSE))
    rownames(map_low) <- NULL # Just to avoid strange row index in case upstream functions changed
    map_low <- map_low[rep(seq_len(nrow(map_low)), each = length(low_levels)), , drop = FALSE]
    map_low <- cbind(map_low, low_levels_df)

    # Define high direction of map
    df_high <- subset(df, df[[variables$range_high]] != na_str | !is.na(df[[variables$range_high]]))
    map_high <- unique(df_high[variables$split_rows])
    high_levels <- unname(unlist(abnormal[toupper(names(abnormal)) == "HIGH"]))
    high_levels_df <- as.data.frame(high_levels)
    colnames(high_levels_df) <- variables$anl
    high_levels_df <- do.call("rbind", replicate(nrow(map_high), high_levels_df, simplify = FALSE))
    rownames(map_high) <- NULL
    map_high <- map_high[rep(seq_len(nrow(map_high)), each = length(high_levels)), , drop = FALSE]
    map_high <- cbind(map_high, high_levels_df)

    # Define normal of map
    map_normal <- unique(rbind(map_low, map_high)[variables$split_rows])
    map_normal[variables$anl] <- normal_value

    map <- rbind(map_low, map_high, map_normal)
  }

  # map should be all characters
  map <- data.frame(lapply(map, as.character), stringsAsFactors = FALSE)

  # sort the map final output by split_rows variables
  for (i in rev(seq_len(length(variables$split_rows)))) {
    map <- map[order(map[[i]]), ]
  }
  map
}

Try the tern package in your browser

Any scripts or data that you put into this service are public.

tern documentation built on Sept. 24, 2024, 9:06 a.m.