Nothing
#' Summarize analysis of covariance (ANCOVA) results
#'
#' @description `r lifecycle::badge("stable")`
#'
#' The analyze function [summarize_ancova()] creates a layout element to summarize ANCOVA results.
#'
#' This function can be used to analyze multiple endpoints and/or multiple timepoints within the response variable(s)
#' specified as `vars`.
#'
#' Additional variables for the analysis, namely an arm (grouping) variable and covariate variables, can be defined
#' via the `variables` argument. See below for more details on how to specify `variables`. An interaction term can
#' be implemented in the model if needed. The interaction variable that should interact with the arm variable is
#' specified via the `interaction_term` parameter, and the specific value of `interaction_term` for which to extract
#' the ANCOVA results via the `interaction_y` parameter.
#'
#' @inheritParams h_ancova
#' @inheritParams argument_convention
#' @param interaction_y (`string` or `flag`)\cr a selected item inside of the `interaction_item` variable which will be
#' used to select the specific ANCOVA results. if the interaction is not needed, the default option is `FALSE`.
#' @param .stats (`character`)\cr statistics to select for the table.
#'
#' Options are: ``r shQuote(get_stats("summarize_ancova"), type = "sh")``
#'
#' @name summarize_ancova
#' @order 1
NULL
#' Helper function to return results of a linear model
#'
#' @description `r lifecycle::badge("stable")`
#'
#' @inheritParams argument_convention
#' @param .df_row (`data.frame`)\cr data set that includes all the variables that are called in `.var` and `variables`.
#' @param variables (named `list` of `string`)\cr list of additional analysis variables, with expected elements:
#' * `arm` (`string`)\cr group variable, for which the covariate adjusted means of multiple groups will be
#' summarized. Specifically, the first level of `arm` variable is taken as the reference group.
#' * `covariates` (`character`)\cr a vector that can contain single variable names (such as `"X1"`), and/or
#' interaction terms indicated by `"X1 * X2"`.
#' @param interaction_item (`string` or `NULL`)\cr name of the variable that should have interactions
#' with arm. if the interaction is not needed, the default option is `NULL`.
#' @param weights_emmeans (`string` or `NULL`)\cr argument from [emmeans::emmeans()]
#'
#' @return The summary of a linear model.
#'
#' @examples
#' h_ancova(
#' .var = "Sepal.Length",
#' .df_row = iris,
#' variables = list(arm = "Species", covariates = c("Petal.Length * Petal.Width", "Sepal.Width"))
#' )
#'
#' @export
h_ancova <- function(.var,
.df_row,
variables,
interaction_item = NULL,
weights_emmeans = NULL) {
checkmate::assert_string(.var)
checkmate::assert_list(variables)
checkmate::assert_subset(names(variables), c("arm", "covariates"))
assert_df_with_variables(.df_row, list(rsp = .var))
arm <- variables$arm
covariates <- variables$covariates
if (!is.null(covariates) && length(covariates) > 0) {
# Get all covariate variable names in the model.
var_list <- get_covariates(covariates)
assert_df_with_variables(.df_row, var_list)
}
covariates_part <- paste(covariates, collapse = " + ")
if (covariates_part != "") {
formula <- stats::as.formula(paste0(.var, " ~ ", covariates_part, " + ", arm))
} else {
formula <- stats::as.formula(paste0(.var, " ~ ", arm))
}
if (is.null(interaction_item)) {
specs <- arm
} else {
specs <- c(arm, interaction_item)
}
lm_fit <- stats::lm(
formula = formula,
data = .df_row
)
emmeans_fit <- emmeans::emmeans(
lm_fit,
# Specify here the group variable over which EMM are desired.
specs = specs,
# Pass the data again so that the factor levels of the arm variable can be inferred.
data = .df_row,
weights = weights_emmeans
)
emmeans_fit
}
#' @describeIn summarize_ancova Statistics function that produces a named list of results
#' of the investigated linear model.
#'
#' @return
#' * `s_ancova()` returns a named list of 5 statistics:
#' * `n`: Count of complete sample size for the group.
#' * `lsmean`: Estimated marginal means in the group.
#' * `lsmean_diff`: Difference in estimated marginal means in comparison to the reference group.
#' If working with the reference group, this will be empty.
#' * `lsmean_diff_ci`: Confidence level for difference in estimated marginal means in comparison
#' to the reference group.
#' * `pval`: p-value (not adjusted for multiple comparisons).
#'
#' @keywords internal
s_ancova <- function(df,
.var,
.df_row,
.ref_group,
.in_ref_col,
variables,
conf_level,
interaction_y = FALSE,
interaction_item = NULL,
weights_emmeans = NULL,
...) {
emmeans_fit <- h_ancova(
.var = .var,
variables = variables,
.df_row = .df_row,
interaction_item = interaction_item,
weights_emmeans = weights_emmeans
)
sum_fit <- summary(
emmeans_fit,
level = conf_level
)
arm <- variables$arm
sum_level <- as.character(unique(df[[arm]]))
# Ensure that there is only one element in sum_level.
checkmate::assert_scalar(sum_level)
sum_fit_level <- sum_fit[sum_fit[[arm]] == sum_level, ]
# Get the index of the ref arm
if (interaction_y != FALSE) {
y <- unlist(df[(df[[interaction_item]] == interaction_y), .var])
# convert characters selected in interaction_y into the numeric order
interaction_y <- which(sum_fit_level[[interaction_item]] == interaction_y)
sum_fit_level <- sum_fit_level[interaction_y, ]
# if interaction is called, reset the index
ref_key <- seq(sum_fit[[arm]][unique(.ref_group[[arm]])])
ref_key <- tail(ref_key, n = 1)
ref_key <- (interaction_y - 1) * length(unique(.df_row[[arm]])) + ref_key
} else {
y <- df[[.var]]
# Get the index of the ref arm when interaction is not called
ref_key <- seq(sum_fit[[arm]][unique(.ref_group[[arm]])])
ref_key <- tail(ref_key, n = 1)
}
if (.in_ref_col) {
list(
n = length(y[!is.na(y)]),
lsmean = formatters::with_label(sum_fit_level$emmean, "Adjusted Mean"),
lsmean_diff = formatters::with_label(numeric(), "Difference in Adjusted Means"),
lsmean_diff_ci = formatters::with_label(numeric(), f_conf_level(conf_level)),
pval = formatters::with_label(numeric(), "p-value")
)
} else {
# Estimate the differences between the marginal means.
emmeans_contrasts <- emmeans::contrast(
emmeans_fit,
# Compare all arms versus the control arm.
method = "trt.vs.ctrl",
# Take the arm factor from .ref_group as the control arm.
ref = ref_key,
level = conf_level
)
sum_contrasts <- summary(
emmeans_contrasts,
# Derive confidence intervals, t-tests and p-values.
infer = TRUE,
# Do not adjust the p-values for multiplicity.
adjust = "none"
)
contrast_lvls <- gsub(
"^\\(|\\)$", "", gsub(paste0(" - \\(*", .ref_group[[arm]][1], ".*"), "", sum_contrasts$contrast)
)
if (!is.null(interaction_item)) {
sum_contrasts_level <- sum_contrasts[grepl(sum_level, contrast_lvls, fixed = TRUE), ]
} else {
sum_contrasts_level <- sum_contrasts[sum_level == contrast_lvls, ]
}
if (interaction_y != FALSE) {
sum_contrasts_level <- sum_contrasts_level[interaction_y, ]
}
list(
n = length(y[!is.na(y)]),
lsmean = formatters::with_label(sum_fit_level$emmean, "Adjusted Mean"),
lsmean_diff = formatters::with_label(sum_contrasts_level$estimate, "Difference in Adjusted Means"),
lsmean_diff_ci = formatters::with_label(
c(sum_contrasts_level$lower.CL, sum_contrasts_level$upper.CL),
f_conf_level(conf_level)
),
pval = formatters::with_label(sum_contrasts_level$p.value, "p-value")
)
}
}
#' @describeIn summarize_ancova Formatted analysis function which is used as `afun` in `summarize_ancova()`.
#'
#' @return
#' * `a_ancova()` returns the corresponding list with formatted [rtables::CellValue()].
#'
#' @keywords internal
a_ancova <- function(df,
...,
.stats = NULL,
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL) {
# Check for additional parameters to the statistics function
dots_extra_args <- list(...)
extra_afun_params <- retrieve_extra_afun_params(names(dots_extra_args$.additional_fun_parameters))
dots_extra_args$.additional_fun_parameters <- NULL
# Check for user-defined functions
default_and_custom_stats_list <- .split_std_from_custom_stats(.stats)
.stats <- default_and_custom_stats_list$all_stats
custom_stat_functions <- default_and_custom_stats_list$custom_stats
# Apply statistics function
x_stats <- .apply_stat_functions(
default_stat_fnc = s_ancova,
custom_stat_fnc_list = custom_stat_functions,
args_list = c(
df = list(df),
extra_afun_params,
dots_extra_args
)
)
# Fill in formatting defaults
.stats <- get_stats("summarize_ancova",
stats_in = .stats,
custom_stats_in = names(custom_stat_functions)
)
x_stats <- x_stats[.stats]
.formats <- get_formats_from_stats(.stats, .formats)
.labels <- get_labels_from_stats(
.stats, .labels,
tern_defaults = c(lapply(x_stats[names(x_stats) != "n"], attr, "label"), tern_default_labels)
)
.indent_mods <- get_indents_from_stats(.stats, .indent_mods)
# Auto format handling
.formats <- apply_auto_formatting(.formats, x_stats, extra_afun_params$.df_row, extra_afun_params$.var)
# Get and check statistical names
.stat_names <- get_stat_names(x_stats, .stat_names)
in_rows(
.list = x_stats,
.formats = .formats,
.names = .labels %>% .unlist_keep_nulls(),
.stat_names = .stat_names,
.labels = .labels %>% .unlist_keep_nulls(),
.indent_mods = .indent_mods %>% .unlist_keep_nulls()
)
}
#' @describeIn summarize_ancova Layout-creating function which can take statistics function arguments
#' and additional format arguments. This function is a wrapper for [rtables::analyze()].
#'
#' @return
#' * `summarize_ancova()` returns a layout object suitable for passing to further layouting functions,
#' or to [rtables::build_table()]. Adding this function to an `rtable` layout will add formatted rows containing
#' the statistics from `s_ancova()` to the table layout.
#'
#' @examples
#' basic_table() %>%
#' split_cols_by("Species", ref_group = "setosa") %>%
#' add_colcounts() %>%
#' summarize_ancova(
#' vars = "Petal.Length",
#' variables = list(arm = "Species", covariates = NULL),
#' table_names = "unadj",
#' conf_level = 0.95, var_labels = "Unadjusted comparison",
#' .labels = c(lsmean = "Mean", lsmean_diff = "Difference in Means")
#' ) %>%
#' summarize_ancova(
#' vars = "Petal.Length",
#' variables = list(arm = "Species", covariates = c("Sepal.Length", "Sepal.Width")),
#' table_names = "adj",
#' conf_level = 0.95, var_labels = "Adjusted comparison (covariates: Sepal.Length and Sepal.Width)"
#' ) %>%
#' build_table(iris)
#'
#' @export
#' @order 2
summarize_ancova <- function(lyt,
vars,
variables,
conf_level,
interaction_y = FALSE,
interaction_item = NULL,
weights_emmeans = NULL,
var_labels,
na_str = default_na_str(),
nested = TRUE,
...,
show_labels = "visible",
table_names = vars,
.stats = c("n", "lsmean", "lsmean_diff", "lsmean_diff_ci", "pval"),
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = list("lsmean_diff_ci" = 1L, "pval" = 1L)) {
# Process standard extra arguments
extra_args <- list(".stats" = .stats)
if (!is.null(.stat_names)) extra_args[[".stat_names"]] <- .stat_names
if (!is.null(.formats)) extra_args[[".formats"]] <- .formats
if (!is.null(.labels)) extra_args[[".labels"]] <- .labels
if (!is.null(.indent_mods)) extra_args[[".indent_mods"]] <- .indent_mods
# Process additional arguments to the statistic function
extra_args <- c(
extra_args,
variables = list(variables), conf_level = list(conf_level), interaction_y = list(interaction_y),
interaction_item = list(interaction_item),
weights_emmeans = weights_emmeans,
...
)
# Append additional info from layout to the analysis function
extra_args[[".additional_fun_parameters"]] <- get_additional_afun_params(add_alt_df = FALSE)
formals(a_ancova) <- c(formals(a_ancova), extra_args[[".additional_fun_parameters"]])
analyze(
lyt = lyt,
vars = vars,
afun = a_ancova,
na_str = na_str,
nested = nested,
extra_args = extra_args,
var_labels = var_labels,
show_labels = show_labels,
table_names = table_names
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.