Nothing
#' Tabulate survival duration by subgroup
#'
#' @description `r lifecycle::badge("stable")`
#'
#' The [tabulate_survival_subgroups()] function creates a layout element to tabulate survival duration by subgroup,
#' returning statistics including median survival time and hazard ratio for each population subgroup. The table is
#' created from `df`, a list of data frames returned by [extract_survival_subgroups()], with the statistics to include
#' specified via the `vars` parameter.
#'
#' A forest plot can be created from the resulting table using the [g_forest()] function.
#'
#' @inheritParams argument_convention
#' @inheritParams survival_coxph_pairwise
#' @param df (`list`)\cr list of data frames containing all analysis variables. List should be
#' created using [extract_survival_subgroups()].
#' @param vars (`character`)\cr the names of statistics to be reported among:
#' * `n_tot_events`: Total number of events per group.
#' * `n_events`: Number of events per group.
#' * `n_tot`: Total number of observations per group.
#' * `n`: Number of observations per group.
#' * `median`: Median survival time.
#' * `hr`: Hazard ratio.
#' * `ci`: Confidence interval of hazard ratio.
#' * `pval`: p-value of the effect.
#' Note, one of the statistics `n_tot` and `n_tot_events`, as well as both `hr` and `ci`
#' are required.
#' @param time_unit (`string`)\cr label with unit of median survival time. Default `NULL` skips displaying unit.
#'
#' @details These functions create a layout starting from a data frame which contains
#' the required statistics. Tables typically used as part of forest plot.
#'
#' @seealso [extract_survival_subgroups()]
#'
#' @examples
#' library(dplyr)
#'
#' adtte <- tern_ex_adtte
#'
#' # Save variable labels before data processing steps.
#' adtte_labels <- formatters::var_labels(adtte)
#'
#' adtte_f <- adtte %>%
#' filter(
#' PARAMCD == "OS",
#' ARM %in% c("B: Placebo", "A: Drug X"),
#' SEX %in% c("M", "F")
#' ) %>%
#' mutate(
#' # Reorder levels of ARM to display reference arm before treatment arm.
#' ARM = droplevels(forcats::fct_relevel(ARM, "B: Placebo")),
#' SEX = droplevels(SEX),
#' AVALU = as.character(AVALU),
#' is_event = CNSR == 0
#' )
#' labels <- c(
#' "ARM" = adtte_labels[["ARM"]],
#' "SEX" = adtte_labels[["SEX"]],
#' "AVALU" = adtte_labels[["AVALU"]],
#' "is_event" = "Event Flag"
#' )
#' formatters::var_labels(adtte_f)[names(labels)] <- labels
#'
#' df <- extract_survival_subgroups(
#' variables = list(
#' tte = "AVAL",
#' is_event = "is_event",
#' arm = "ARM", subgroups = c("SEX", "BMRKR2")
#' ),
#' label_all = "Total Patients",
#' data = adtte_f
#' )
#' df
#'
#' df_grouped <- extract_survival_subgroups(
#' variables = list(
#' tte = "AVAL",
#' is_event = "is_event",
#' arm = "ARM", subgroups = c("SEX", "BMRKR2")
#' ),
#' data = adtte_f,
#' groups_lists = list(
#' BMRKR2 = list(
#' "low" = "LOW",
#' "low/medium" = c("LOW", "MEDIUM"),
#' "low/medium/high" = c("LOW", "MEDIUM", "HIGH")
#' )
#' )
#' )
#' df_grouped
#'
#' @name survival_duration_subgroups
#' @order 1
NULL
#' Prepare survival data for population subgroups in data frames
#'
#' @description `r lifecycle::badge("stable")`
#'
#' Prepares estimates of median survival times and treatment hazard ratios for population subgroups in
#' data frames. Simple wrapper for [h_survtime_subgroups_df()] and [h_coxph_subgroups_df()]. Result is a `list`
#' of two `data.frame`s: `survtime` and `hr`. `variables` corresponds to the names of variables found in `data`,
#' passed as a named `list` and requires elements `tte`, `is_event`, `arm` and optionally `subgroups` and `strata`.
#' `groups_lists` optionally specifies groupings for `subgroups` variables.
#'
#' @inheritParams argument_convention
#' @inheritParams survival_duration_subgroups
#' @inheritParams survival_coxph_pairwise
#'
#' @return A named `list` of two elements:
#' * `survtime`: A `data.frame` containing columns `arm`, `n`, `n_events`, `median`, `subgroup`, `var`,
#' `var_label`, and `row_type`.
#' * `hr`: A `data.frame` containing columns `arm`, `n_tot`, `n_tot_events`, `hr`, `lcl`, `ucl`, `conf_level`,
#' `pval`, `pval_label`, `subgroup`, `var`, `var_label`, and `row_type`.
#'
#' @seealso [survival_duration_subgroups]
#'
#' @export
extract_survival_subgroups <- function(variables,
data,
groups_lists = list(),
control = control_coxph(),
label_all = "All Patients") {
if ("strat" %in% names(variables)) {
warning(
"Warning: the `strat` element name of the `variables` list argument to `extract_survival_subgroups() ",
"was deprecated in tern 0.9.4.\n ",
"Please use the name `strata` instead of `strat` in the `variables` argument."
)
variables[["strata"]] <- variables[["strat"]]
}
df_survtime <- h_survtime_subgroups_df(
variables,
data,
groups_lists = groups_lists,
label_all = label_all
)
df_hr <- h_coxph_subgroups_df(
variables,
data,
groups_lists = groups_lists,
control = control,
label_all = label_all
)
list(survtime = df_survtime, hr = df_hr)
}
#' @describeIn survival_duration_subgroups Formatted analysis function which is used as
#' `afun` in `tabulate_survival_subgroups()`.
#'
#' @return
#' * `a_survival_subgroups()` returns the corresponding list with formatted [rtables::CellValue()].
#'
#' @keywords internal
a_survival_subgroups <- function(.formats = list( # nolint start
n = "xx",
n_events = "xx",
n_tot_events = "xx",
median = "xx.x",
n_tot = "xx",
hr = list(format_extreme_values(2L)),
ci = list(format_extreme_values_ci(2L)),
pval = "x.xxxx | (<0.0001)"
),
na_str = default_na_str()) { # nolint end
checkmate::assert_list(.formats)
checkmate::assert_subset(
names(.formats),
c("n", "n_events", "median", "n_tot", "n_tot_events", "hr", "ci", "pval", "riskdiff")
)
afun_lst <- Map(
function(stat, fmt, na_str) {
function(df, labelstr = "", ...) {
in_rows(
.list = as.list(df[[stat]]),
.labels = as.character(df$subgroup),
.formats = fmt,
.format_na_strs = na_str
)
}
},
stat = names(.formats),
fmt = .formats,
na_str = na_str
)
afun_lst
}
#' @describeIn survival_duration_subgroups Table-creating function which creates a table
#' summarizing survival by subgroup. This function is a wrapper for [rtables::analyze_colvars()]
#' and [rtables::summarize_row_groups()].
#'
#' @param label_all `r lifecycle::badge("deprecated")`\cr please assign the `label_all` parameter within the
#' [extract_survival_subgroups()] function when creating `df`.
#' @param riskdiff (`list`)\cr if a risk (proportion) difference column should be added, a list of settings to apply
#' within the column. See [control_riskdiff()] for details. If `NULL`, no risk difference column will be added. If
#' `riskdiff$arm_x` and `riskdiff$arm_y` are `NULL`, the first level of `df$survtime$arm` will be used as `arm_x`
#' and the second level as `arm_y`.
#'
#' @return An `rtables` table summarizing survival by subgroup.
#'
#' @examples
#' ## Table with default columns.
#' basic_table() %>%
#' tabulate_survival_subgroups(df, time_unit = adtte_f$AVALU[1])
#'
#' ## Table with a manually chosen set of columns: adding "pval".
#' basic_table() %>%
#' tabulate_survival_subgroups(
#' df = df,
#' vars = c("n_tot_events", "n_events", "median", "hr", "ci", "pval"),
#' time_unit = adtte_f$AVALU[1]
#' )
#'
#' @export
#' @order 2
tabulate_survival_subgroups <- function(lyt,
df,
vars = c("n_tot_events", "n_events", "median", "hr", "ci"),
groups_lists = list(),
label_all = lifecycle::deprecated(),
time_unit = NULL,
riskdiff = NULL,
na_str = default_na_str(),
.formats = c(
n = "xx", n_events = "xx", n_tot_events = "xx", median = "xx.x", n_tot = "xx",
hr = list(format_extreme_values(2L)), ci = list(format_extreme_values_ci(2L)),
pval = "x.xxxx | (<0.0001)"
)) {
checkmate::assert_list(riskdiff, null.ok = TRUE)
checkmate::assert_true(any(c("n_tot", "n_tot_events") %in% vars))
checkmate::assert_true(all(c("hr", "ci") %in% vars))
if (lifecycle::is_present(label_all)) {
lifecycle::deprecate_warn(
"0.9.5", "tabulate_survival_subgroups(label_all)",
details =
"Please assign the `label_all` parameter within the `extract_survival_subgroups()` function when creating `df`."
)
}
# Create "ci" column from "lcl" and "ucl"
df$hr$ci <- combine_vectors(df$hr$lcl, df$hr$ucl)
# Fill in missing formats with defaults
default_fmts <- eval(formals(tabulate_survival_subgroups)$.formats)
.formats <- c(.formats, default_fmts[vars[!vars %in% names(.formats)]])
# Extract additional parameters from df
conf_level <- df$hr$conf_level[1]
method <- df$hr$pval_label[1]
colvars <- d_survival_subgroups_colvars(vars, conf_level = conf_level, method = method, time_unit = time_unit)
survtime_vars <- intersect(colvars$vars, c("n", "n_events", "median"))
hr_vars <- intersect(names(colvars$labels), c("n_tot", "n_tot_events", "hr", "ci", "pval"))
colvars_survtime <- list(vars = survtime_vars, labels = colvars$labels[survtime_vars])
colvars_hr <- list(vars = hr_vars, labels = colvars$labels[hr_vars])
extra_args <- list(groups_lists = groups_lists, conf_level = conf_level, method = method)
# Get analysis function for each statistic
afun_lst <- a_survival_subgroups(.formats = c(.formats, riskdiff = riskdiff$format), na_str = na_str)
# Add risk difference column
if (!is.null(riskdiff)) {
if (is.null(riskdiff$arm_x)) riskdiff$arm_x <- levels(df$survtime$arm)[1]
if (is.null(riskdiff$arm_y)) riskdiff$arm_y <- levels(df$survtime$arm)[2]
colvars_hr$vars <- c(colvars_hr$vars, "riskdiff")
colvars_hr$labels <- c(colvars_hr$labels, riskdiff = riskdiff$col_label)
arm_cols <- paste(rep(c("n_events", "n_events", "n", "n")), c(riskdiff$arm_x, riskdiff$arm_y), sep = "_")
df_prop_diff <- df$survtime %>%
dplyr::select(-"median") %>%
tidyr::pivot_wider(
id_cols = c("subgroup", "var", "var_label", "row_type"),
names_from = "arm",
values_from = c("n", "n_events")
) %>%
dplyr::rowwise() %>%
dplyr::mutate(
riskdiff = stat_propdiff_ci(
x = as.list(.data[[arm_cols[1]]]),
y = as.list(.data[[arm_cols[2]]]),
N_x = .data[[arm_cols[3]]],
N_y = .data[[arm_cols[4]]]
)
) %>%
dplyr::select(-dplyr::all_of(arm_cols))
df$hr <- df$hr %>%
dplyr::left_join(
df_prop_diff,
by = c("subgroup", "var", "var_label", "row_type")
)
}
# Add columns from table_survtime (optional)
if (length(colvars_survtime$vars) > 0) {
lyt_survtime <- split_cols_by(lyt = lyt, var = "arm")
lyt_survtime <- split_rows_by(
lyt = lyt_survtime,
var = "row_type",
split_fun = keep_split_levels("content"),
nested = FALSE
)
# Add "All Patients" row
lyt_survtime <- summarize_row_groups(
lyt = lyt_survtime,
var = "var_label",
cfun = afun_lst[names(colvars_survtime$labels)],
na_str = na_str,
extra_args = extra_args
)
lyt_survtime <- split_cols_by_multivar(
lyt = lyt_survtime,
vars = colvars_survtime$vars,
varlabels = colvars_survtime$labels
)
# Add analysis rows
if ("analysis" %in% df$survtime$row_type) {
lyt_survtime <- split_rows_by(
lyt = lyt_survtime,
var = "row_type",
split_fun = keep_split_levels("analysis"),
nested = FALSE,
child_labels = "hidden"
)
lyt_survtime <- split_rows_by(lyt = lyt_survtime, var = "var_label", nested = TRUE)
lyt_survtime <- analyze_colvars(
lyt = lyt_survtime,
afun = afun_lst[names(colvars_survtime$labels)],
na_str = na_str,
inclNAs = TRUE,
extra_args = extra_args
)
}
table_survtime <- build_table(lyt_survtime, df = df$survtime)
} else {
table_survtime <- NULL
}
# Add columns from table_hr ("n_tot_events" or "n_tot", "or" and "ci" required)
lyt_hr <- split_cols_by(lyt = lyt, var = "arm")
lyt_hr <- split_rows_by(
lyt = lyt_hr,
var = "row_type",
split_fun = keep_split_levels("content"),
nested = FALSE
)
lyt_hr <- summarize_row_groups(
lyt = lyt_hr,
var = "var_label",
cfun = afun_lst[names(colvars_hr$labels)],
na_str = na_str,
extra_args = extra_args
)
lyt_hr <- split_cols_by_multivar(
lyt = lyt_hr,
vars = colvars_hr$vars,
varlabels = colvars_hr$labels
) %>%
append_topleft("Baseline Risk Factors")
# Add analysis rows
if ("analysis" %in% df$survtime$row_type) {
lyt_hr <- split_rows_by(
lyt = lyt_hr,
var = "row_type",
split_fun = keep_split_levels("analysis"),
nested = FALSE,
child_labels = "hidden"
)
lyt_hr <- split_rows_by(lyt = lyt_hr, var = "var_label", nested = TRUE)
lyt_hr <- analyze_colvars(
lyt = lyt_hr,
afun = afun_lst[names(colvars_hr$labels)],
na_str = na_str,
inclNAs = TRUE,
extra_args = extra_args
)
}
table_hr <- build_table(lyt_hr, df = df$hr)
# Join tables, add forest plot attributes
n_tot_ids <- grep("^n_tot", colvars_hr$vars)
if (is.null(table_survtime)) {
result <- table_hr
hr_id <- match("hr", colvars_hr$vars)
ci_id <- match("ci", colvars_hr$vars)
} else {
result <- cbind_rtables(table_hr[, n_tot_ids], table_survtime, table_hr[, -n_tot_ids])
hr_id <- length(n_tot_ids) + ncol(table_survtime) + match("hr", colvars_hr$vars[-n_tot_ids])
ci_id <- length(n_tot_ids) + ncol(table_survtime) + match("ci", colvars_hr$vars[-n_tot_ids])
n_tot_ids <- seq_along(n_tot_ids)
}
structure(
result,
forest_header = paste0(rev(levels(df$survtime$arm)), "\nBetter"),
col_x = hr_id,
col_ci = ci_id,
col_symbol_size = n_tot_ids[1] # for scaling the symbol sizes in forest plots
)
}
#' Labels for column variables in survival duration by subgroup table
#'
#' @description `r lifecycle::badge("stable")`
#'
#' Internal function to check variables included in [tabulate_survival_subgroups()] and create column labels.
#'
#' @inheritParams tabulate_survival_subgroups
#' @inheritParams argument_convention
#' @param method (`string`)\cr p-value method for testing hazard ratio = 1.
#'
#' @return A `list` of variables and their labels to tabulate.
#'
#' @note At least one of `n_tot` and `n_tot_events` must be provided in `vars`.
#'
#' @export
d_survival_subgroups_colvars <- function(vars,
conf_level,
method,
time_unit = NULL) {
checkmate::assert_character(vars)
checkmate::assert_string(time_unit, null.ok = TRUE)
checkmate::assert_subset(c("hr", "ci"), vars)
checkmate::assert_true(any(c("n_tot", "n_tot_events") %in% vars))
checkmate::assert_subset(
vars,
c("n", "n_events", "median", "n_tot", "n_tot_events", "hr", "ci", "pval")
)
propcase_time_label <- if (!is.null(time_unit)) {
paste0("Median (", time_unit, ")")
} else {
"Median"
}
varlabels <- c(
n = "n",
n_events = "Events",
median = propcase_time_label,
n_tot = "Total n",
n_tot_events = "Total Events",
hr = "Hazard Ratio",
ci = paste0(100 * conf_level, "% Wald CI"),
pval = method
)
colvars <- vars
# The `lcl` variable is just a placeholder available in the analysis data,
# it is not acutally used in the tabulation.
# Variables used in the tabulation are lcl and ucl, see `a_survival_subgroups` for details.
colvars[colvars == "ci"] <- "lcl"
list(
vars = colvars,
labels = varlabels[vars]
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.