tests/testthat/test-h_step.R

# Raw data and local data pre-processing
raw_data <- data.frame(
  time = c(5, 5, 10, 10, 5, 5, 5, 10, 10, 5),
  status = c(0, 0, 1, 0, 1, 0, 1, 1, 1, 0),
  armcd = factor(LETTERS[c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)], levels = c("A", "B")),
  age = c(15, 68, 65, 17, 52, 12, 33, 45, 20, 17),
  stage = factor(
    c("1", "2", "1", "1", "1", "1", "2", "1", "2", "1"),
    levels = c("1", "2")
  ),
  rsp = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)
)

adrs_local <- tern_ex_adrs %>%
  dplyr::filter(ARMCD %in% c("ARM A", "ARM B")) %>%
  dplyr::mutate(
    RSP = dplyr::case_when(AVALC %in% c("PR", "CR") ~ 1, TRUE ~ 0),
    ARMBIN = droplevels(ARMCD)
  )

# h_step_window ----

testthat::test_that("h_step_window works as expected for percentiles", {
  x <- -5:10
  control <- control_step(use_percentile = TRUE, num_points = 5L, bandwidth = 0.2)
  result <- testthat::expect_silent(h_step_window(x = x, control = control))
  testthat::expect_type(result, "list")

  res <- testthat::expect_silent(names(result))
  testthat::expect_snapshot(res)

  sel <- result$sel
  testthat::expect_true(is.matrix(sel))
  testthat::expect_identical(dim(sel), c(length(x), control$num_points))

  res <- testthat::expect_silent(mode(sel))
  testthat::expect_snapshot(res)

  interval <- result$interval
  testthat::expect_true(is.matrix(interval))
  testthat::expect_identical(nrow(interval), control$num_points)

  res <- testthat::expect_silent(colnames(interval))
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(nrow(interval))
  testthat::expect_snapshot(res)
})

testthat::test_that("h_step_window works as expected for actual biomarker values", {
  x <- -5:10
  control <- control_step(use_percentile = FALSE, num_points = 5L, bandwidth = 3)
  result <- testthat::expect_silent(h_step_window(x = x, control = control))

  res <- testthat::expect_silent(names(result))
  testthat::expect_snapshot(res)
  testthat::expect_type(result, "list")

  sel <- result$sel
  testthat::expect_true(all(colSums(sel) %in% (control$bandwidth * 2 + c(0L, 1L))))
  interval <- result$interval

  res <- testthat::expect_silent(colnames(interval))
  testthat::expect_snapshot(res)
  testthat::expect_true(is.matrix(interval))
})

testthat::test_that("h_step_window also works for bandwidth `NULL`", {
  x <- -5:10
  control <- control_step(bandwidth = NULL, num_points = 2L)
  result <- testthat::expect_silent(h_step_window(x = x, control = control))
  testthat::expect_true(all(result$sel))
  testthat::expect_true(all(result$interval[, "Percentile Lower"] == 0))
  testthat::expect_true(all(result$interval[, "Percentile Upper"] == 1))
})

# h_step_trt_effect ----

testthat::test_that("h_step_trt_effect works for Cox models without interaction", {
  dta_simple <- raw_data
  # Use a model without biomarker interaction, then we can compare with summary results.
  mod <- survival::coxph(survival::Surv(time, status) ~ armcd + age, data = dta_simple)
  vars <- list(
    arm = "armcd",
    biomarker = "age"
  )
  result <- h_step_trt_effect(
    data = dta_simple,
    model = mod,
    variables = vars,
    x = 100 # Note: this does not have any effect on results, because there is no interaction.
  )
  coef_sum <- summary(mod)$coefficients
  testthat::expect_equal(result, coef_sum["armcdB", c("coef", "se(coef)")], ignore_attr = TRUE)
})

testthat::test_that("h_step_trt_effect works for Cox models with interaction", {
  dta_simple <- raw_data
  mod <- survival::coxph(survival::Surv(time, status) ~ armcd * age + stage, data = dta_simple)
  vars <- list(
    arm = "armcd",
    biomarker = "age"
  )
  # Try first at age = 0, which reduces to no interaction case.
  result <- h_step_trt_effect(
    data = dta_simple,
    model = mod,
    variables = vars,
    x = 0
  )
  coef_sum <- summary(mod)$coefficients
  testthat::expect_equal(result, coef_sum["armcdB", c("coef", "se(coef)")], ignore_attr = TRUE)
  # Then at age = 50. Compare point estimate with manual calculation.
  result <- h_step_trt_effect(
    data = dta_simple,
    model = mod,
    variables = vars,
    x = 50
  )
  est_manual <- sum(stats::coef(mod)[c("armcdB", "age", "armcdB:age")] * (c(1, 50, 50) - c(0, 50, 0)))
  testthat::expect_equal(result["est"], est_manual, ignore_attr = TRUE)
  # Regression test for se.
  res <- testthat::expect_silent(result["se"])
  testthat::expect_snapshot(res)
})

testthat::test_that("h_step_trt_effect works for Cox models with strata", {
  dta_simple <- raw_data
  mod <- survival::coxph(
    survival::Surv(time, status) ~ armcd * age + strata(stage),
    data = dta_simple
  )
  vars <- list(
    arm = "armcd",
    biomarker = "age"
  )
  # Try first at age = 0, which reduces to no interaction case.
  result <- testthat::expect_silent(h_step_trt_effect(
    data = dta_simple,
    model = mod,
    variables = vars,
    x = 0
  ))
  coef_sum <- summary(mod)$coefficients
  testthat::expect_equal(result, coef_sum["armcdB", c("coef", "se(coef)")], ignore_attr = TRUE)
})

testthat::test_that("h_step_trt_effect works for logistic regression models without interaction", {
  dta_simple <- raw_data
  # Use a model without biomarker interaction, then we can compare with summary results.
  mod <- stats::glm(status ~ armcd + age, data = dta_simple, family = stats::binomial())
  vars <- list(
    arm = "armcd",
    biomarker = "age"
  )
  result <- h_step_trt_effect(
    data = dta_simple,
    model = mod,
    variables = vars,
    x = 100 # Note: this does not have any effect on results, because there is no interaction.
  )
  coef_sum <- summary(mod)$coefficients
  testthat::expect_equal(result, coef_sum["armcdB", c("Estimate", "Std. Error")], ignore_attr = TRUE)
})

testthat::test_that("h_step_trt_effect works for logistic regression models with interaction", {
  dta <- adrs_local
  mod <- stats::glm(formula = RSP ~ ARMBIN * AGE + RACE, data = dta, family = stats::binomial())
  vars <- list(
    arm = "ARMBIN",
    biomarker = "AGE"
  )
  # Try first at age = 0, which reduces to no interaction case.
  result <- h_step_trt_effect(
    data = dta,
    model = mod,
    variables = vars,
    x = 0
  )
  coef_sum <- summary(mod)$coefficients
  testthat::expect_equal(result, coef_sum["ARMBINARM B", c("Estimate", "Std. Error")], ignore_attr = TRUE)
  # Then at age = 50. Compare point estimate with manual calculation.
  result <- h_step_trt_effect(
    data = dta,
    model = mod,
    variables = vars,
    x = 50
  )
  est_manual <- sum(stats::coef(mod)[c("ARMBINARM B", "AGE", "ARMBINARM B:AGE")] * (c(1, 50, 50) - c(0, 50, 0)))
  testthat::expect_equal(result["est"], est_manual, ignore_attr = TRUE)
  # Regression test for se.
  res <- testthat::expect_silent(result["se"])
  testthat::expect_snapshot(res)
})

testthat::test_that("h_step_trt_effect works for conditional logistic regression without interaction", {
  dta <- adrs_local
  dta <- dta[sample(nrow(dta)), ]
  # https://github.com/therneau/survival/issues/240
  withr::with_options(
    opts_partial_match_old,
    mod <- survival::clogit(formula = RSP ~ ARMBIN + strata(STRATA1), data = dta)
  )
  vars <- list(
    arm = "ARMBIN",
    biomarker = "AGE"
  )
  result <- h_step_trt_effect(
    data = dta,
    model = mod,
    variables = vars,
    x = 0
  )
  coef_sum <- summary(mod)$coefficients
  testthat::expect_equal(result, coef_sum["ARMBINARM B", c("coef", "se(coef)")], ignore_attr = TRUE)
})

testthat::test_that("h_step_trt_effect works for conditional logistic regression with interaction", {
  dta <- adrs_local
  dta <- dta[sample(nrow(dta)), ]
  # https://github.com/therneau/survival/issues/240
  withr::with_options(
    opts_partial_match_old,
    mod <- survival::clogit(formula = RSP ~ ARMBIN * AGE + strata(STRATA1), data = dta)
  )
  vars <- list(
    arm = "ARMBIN",
    biomarker = "AGE"
  )
  result <- h_step_trt_effect(
    data = dta,
    model = mod,
    variables = vars,
    x = 50
  )
  est_manual <- sum(stats::coef(mod)[c("ARMBINARM B", "AGE", "ARMBINARM B:AGE")] * (c(1, 50, 50) - c(0, 50, 0)))
  testthat::expect_equal(result["est"], est_manual, ignore_attr = TRUE)
  # Regression test for se.
  res <- testthat::expect_silent(result["se"])
  testthat::expect_snapshot(res)
})

# h_step_survival_formula ----

testthat::test_that("h_step_survival_formula works correctly without covariates or strata", {
  testthat::expect_equal(
    h_step_survival_formula(
      list(arm = "TRT", biomarker = "BM", event = "EV", time = "TIME"),
      control = control_step(degree = 3)
    ),
    Surv(TIME, EV) ~ TRT * stats::poly(BM, degree = 3, raw = TRUE),
    ignore_attr = TRUE
  )
  testthat::expect_equal(
    h_step_survival_formula(
      list(arm = "TRT", biomarker = "BM", event = "EV", time = "TIME"),
      control = control_step(degree = 0)
    ),
    Surv(TIME, EV) ~ TRT,
    ignore_attr = TRUE
  )
})

testthat::test_that("h_step_survival_formula works correctly with covariates", {
  testthat::expect_equal(
    h_step_survival_formula(
      list(arm = "TRT", biomarker = "BM", event = "EV", time = "TIME", covariates = c("A", "B")),
      control = control_step(degree = 2)
    ),
    Surv(TIME, EV) ~ TRT * stats::poly(BM, degree = 2, raw = TRUE) + A + B,
    ignore_attr = TRUE
  )
})

testthat::test_that("h_step_survival_formula works correctly with strata", {
  testthat::expect_equal(
    h_step_survival_formula(
      list(arm = "TRT", biomarker = "BM", event = "EV", time = "TIME", strata = c("A", "B")),
    ),
    Surv(TIME, EV) ~ TRT + strata(A, B),
    ignore_attr = TRUE
  )
})

# h_step_survival_est ----

testthat::test_that("h_step_survival_est works as expected", {
  dta_simple <- raw_data
  vars <- list(
    arm = "armcd",
    biomarker = "age",
    time = "time",
    event = "status",
    covariates = "stage"
  )
  age_vals <- c(20, 30, 40)
  form <- h_step_survival_formula(
    variables = vars,
    control = control_step(degree = 1)
  )
  result <- testthat::expect_silent(h_step_survival_est(
    formula = form,
    data = dta_simple,
    variables = vars,
    x = age_vals
  ))
  testthat::expect_true(is.matrix(result))

  res <- testthat::expect_silent(dim(result))
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(colnames(result))
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(result[, "loghr"])
  testthat::expect_snapshot(res)
})

testthat::test_that("h_step_survival_est gives a readable warning when fitting warnings occur", {
  dta_simple <- raw_data
  vars <- list(
    arm = "armcd",
    biomarker = "age",
    time = "time",
    event = "status",
    covariates = "stage"
  )
  age_vals <- c(20, 30, 40)
  # We increase `degree` such that model becomes very complex and hence fitting warnings occur.
  form <- h_step_survival_formula(
    variables = vars,
    control = control_step(degree = 4)
  )
  testthat::expect_warning(
    h_step_survival_est(
      formula = form,
      data = dta_simple,
      variables = vars,
      x = age_vals
    ),
    "Fit warnings occurred, please consider using a simpler model"
  )
})

# h_step_rsp_formula ----

testthat::test_that("h_step_rsp_formula works correctly without covariates", {
  testthat::expect_equal(
    h_step_rsp_formula(
      list(arm = "TRT", biomarker = "BM", response = "RSP"),
      control = c(control_step(degree = 3), control_logistic())
    ),
    RSP ~ TRT * stats::poly(BM, degree = 3, raw = TRUE),
    ignore_attr = TRUE
  )
  testthat::expect_equal(
    h_step_rsp_formula(
      list(arm = "TRT", biomarker = "BM", response = "RSP")
    ),
    RSP ~ TRT,
    ignore_attr = TRUE
  )
})

testthat::test_that("h_step_rsp_formula works correctly with covariates", {
  testthat::expect_equal(
    h_step_rsp_formula(
      list(arm = "TRT", biomarker = "BM", response = "RSP", covariates = c("A", "B")),
      control = c(control_logistic(), control_step(degree = 2))
    ),
    RSP ~ TRT * stats::poly(BM, degree = 2, raw = TRUE) + A + B,
    ignore_attr = TRUE
  )
})

testthat::test_that("h_step_rsp_formula works correctly with different response definition", {
  testthat::expect_equal(
    h_step_rsp_formula(
      list(arm = "TRT", biomarker = "BM", response = "AVAL"),
      control = c(
        control_logistic(response_definition = "I(response == 'CR')"),
        control_step(degree = 1)
      )
    ),
    I(AVAL == "CR") ~ TRT * stats::poly(BM, degree = 1, raw = TRUE),
    ignore_attr = TRUE
  )
})

testthat::test_that("h_step_rsp_formula works correctly with strata", {
  testthat::expect_equal(
    h_step_rsp_formula(
      list(arm = "TRT", biomarker = "BM", response = "RSP", strata = c("A", "B")),
      control = c(control_logistic(), control_step(degree = 2))
    ),
    RSP ~ TRT * stats::poly(BM, degree = 2, raw = TRUE) + strata(I(interaction(A, B))),
    ignore_attr = TRUE
  )
  testthat::expect_equal(
    h_step_rsp_formula(
      list(arm = "TRT", biomarker = "BM", response = "RSP", strata = "A"),
      control = c(control_logistic(), control_step(degree = 2))
    ),
    RSP ~ TRT * stats::poly(BM, degree = 2, raw = TRUE) + strata(A),
    ignore_attr = TRUE
  )
})

# h_step_rsp_est ----

testthat::test_that("h_step_rsp_est works as expected without strata", {
  dta_simple <- raw_data
  vars <- list(
    arm = "armcd",
    biomarker = "age",
    response = "rsp",
    covariates = "time"
  )
  age_vals <- c(20, 30, 40)
  form <- h_step_rsp_formula(
    variables = vars,
    control = c(control_logistic(), control_step(degree = 1))
  )
  subset <- dta_simple$age > 15
  result <- testthat::expect_silent(h_step_rsp_est(
    formula = form,
    data = dta_simple,
    variables = vars,
    subset = subset,
    x = age_vals
  ))
  testthat::expect_true(is.matrix(result))

  res <- testthat::expect_silent(dim(result))
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(colnames(result))
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(result[, "logor"])
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(result[, "n"])
  testthat::expect_snapshot(res)
})

testthat::test_that("h_step_rsp_est works as expected with strata", {
  dta_simple <- raw_data
  vars <- list(
    arm = "armcd",
    biomarker = "age",
    response = "rsp",
    covariates = "time",
    strata = "stage"
  )
  age_vals <- c(20, 30, 40)
  form <- h_step_rsp_formula(
    variables = vars,
    control = c(control_logistic(), control_step(degree = 1))
  )
  subset <- dta_simple$age > 15
  # https://github.com/therneau/survival/issues/240
  withr::with_options(
    opts_partial_match_old,
    result <- testthat::expect_silent(h_step_rsp_est(
      formula = form,
      data = dta_simple,
      variables = vars,
      subset = subset,
      x = age_vals
    ))
  )
  testthat::expect_true(is.matrix(result))

  res <- testthat::expect_silent(dim(result))
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(colnames(result))
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(result[, "logor"])
  testthat::expect_snapshot(res)

  res <- testthat::expect_silent(result[, "n"])
  testthat::expect_snapshot(res)
})

testthat::test_that("h_step_rsp_est gives a readable warning when fitting warnings occur", {
  dta_simple <- raw_data
  vars <- list(
    arm = "armcd",
    biomarker = "age",
    response = "rsp",
    covariates = "time",
    strata = "stage"
  )
  age_vals <- c(20, 30, 40)
  # We increase `degree` such that model becomes very complex and hence fitting warnings occur.
  form <- h_step_rsp_formula(
    variables = vars,
    control = c(control_logistic(), control_step(degree = 4))
  )
  testthat::expect_warning(
    h_step_rsp_est(
      formula = form,
      data = dta_simple,
      variables = vars,
      x = age_vals
    ),
    "Fit warnings occurred, please consider using a simpler model"
  )
})

Try the tern package in your browser

Any scripts or data that you put into this service are public.

tern documentation built on Sept. 24, 2024, 9:06 a.m.