R/analogies.R

Defines functions check_analogy_accuracy prepare_analogy_questions

Documented in check_analogy_accuracy prepare_analogy_questions

#' @name prepare_analogy_questions
#' @title Prepares list of analogy questions
#' @param questions_file_path \code{character} path to questions file.
#' @param vocab_terms \code{character} words which we have in the
#'   vocabulary and word embeddings matrix.
#' @description  This function prepares a list of questions from a
#'   \code{questions-words.txt} format. For full examples see \link{GloVe}.
#' @seealso \link{check_analogy_accuracy}, \link{GloVe}
#' @export
prepare_analogy_questions = function(questions_file_path, vocab_terms) {# nocov start
  lines = tolower(readLines(questions_file_path))
  lines =  strsplit(lines, split = " ", fixed = TRUE)

  # identify categories of questions
  section_name_ind = which( sapply(lines, length) != 4 )
  # identify start and end of questions by category
  section_start_ind = section_name_ind + 1
  section_end_ind = c(section_name_ind[ -1 ] - 1, length(lines))
  # construct question matrices by category
  q = Map(
    function(i1, i2, quetsions) {
      # take questions strings
      res = quetsions[i1:i2]
      # make character matrix
      res = do.call(rbind, res)
      # detect word_vectors rows corresponding to words in question
      res = match(res, vocab_terms)
      # make character matrix
      res = matrix(res, ncol = 4)
      # detect whether vocabulary contains all words from question
      # filter out question if vocabulary does not contain all words
      any_na_ind = apply(res, 1, anyNA)
      res[!any_na_ind, ]
    },
    section_start_ind,
    section_end_ind,
    MoreArgs = list(quetsions = lines)
  )

  questions_number = sum(sapply(q, nrow))

  flog.info("%d full questions found out of %d total",
            questions_number,
            length(lines) - length(section_name_ind))

  stats::setNames(q, sapply(lines[section_name_ind], .subset2, 2))
}

#' @name check_analogy_accuracy
#' @title Checks accuracy of word embeddings on the analogy task
#' @param questions_list \code{list} of questions. Each element of
#'   \code{questions_list} is a \code{integer matrix} with four columns. It
#'   represents a set of questions related to a particular category. Each
#'   element of matrix is an index of a row in \code{m_word_vectors}. See output
#'   of \link{prepare_analogy_questions} for details
#' @param m_word_vectors word vectors \code{numeric matrix}. Each row should
#'   represent a word.
#' @description This function checks how well the GloVe word embeddings do on
#'   the analogy task. For full examples see \link{glove}.
#' @seealso \link{prepare_analogy_questions}, \link{glove}
#' @export
check_analogy_accuracy = function(questions_list, m_word_vectors) {

  m_word_vectors_norm =  sqrt(rowSums(m_word_vectors ^ 2))
  m_word_vectors_normalized = m_word_vectors / m_word_vectors_norm

  categories_number = length(questions_list)

  res = vector(mode = 'list', length = categories_number)

  for (i in 1:categories_number) {
    q_mat = questions_list[[i]]
    q_number = nrow(q_mat)
    category = names(questions_list)[[i]]

    m_query =
      m_word_vectors[q_mat[, 2], ] +
      m_word_vectors[q_mat[, 3], ] -
      m_word_vectors[q_mat[, 1], ]

    m_query_norm = sqrt(rowSums(m_query ^ 2))
    m_query_normalized = m_query / m_query_norm

    cos_mat = tcrossprod(m_query_normalized, m_word_vectors_normalized)

    for (j in 1:q_number)
      cos_mat[j, q_mat[j, c(1, 2, 3)]] = -Inf

    preds = max.col(cos_mat, ties.method = 'first')
    act = q_mat[, 4]
    correct_number = sum(preds == act)

    flog.info("%s: correct %d out of %d, accuracy = %.4f",
                   category,
                   correct_number,
                   q_number,
                   correct_number / q_number )

    res[[i]] =
      data.table(
        'predicted' = preds,
        'actual' = act,
        'category' = category
      )
  }
  res = rbindlist(res)
  flog.info("OVERALL ACCURACY = %.4f", sum(res[['predicted']] == res[['actual']]) / nrow(res) )
  res
}# nocov end

Try the text2vec package in your browser

Any scripts or data that you put into this service are public.

text2vec documentation built on Jan. 12, 2018, 1:04 a.m.