tests/setar.sim_TEST.R

library(tsDyn)
suppressMessages(library(dplyr))
library(purrr)
library(tidyr)
suppressWarnings(RNGversion("3.5.3"))

roundAll.Equal <- function(x, round=8){
  isFALSE <- !isTRUE(x)
  xFalse <- x[isFALSE]
  # extract the number (i.e remove all the rest)
  xf<- gsub("(Component ([0-9]+)?([[:punct:]][[:alnum:]]+[[:punct:]])?: )?Mean relative difference: ", 
            "", xFalse)
  xf2<- round(as.numeric(xf),round)
  x[isFALSE] <- paste("Mean relative difference at tol ", round, ": ", xf2, sep="")
  x
}

############################
### Load data
############################
path_mod_uni <- system.file("inst/testdata/models_univariate.rds", package = "tsDyn")
if(path_mod_uni=="") path_mod_uni <- system.file("testdata/models_univariate.rds", package = "tsDyn")

models_univariate <- readRDS(path_mod_uni) %>% 
  filter(model %in% c("lineaar", "setar"))

################
### run boot
################

models_univariate %>% 
  mutate(boot = map(object, ~ tibble(n = 1:3, boot =head(setar.boot(., seed = 123), 3)))) %>% 
  select(-object) %>% 
  unnest(boot)  %>% 
  spread(include, boot) %>% 
  as.data.frame() %>% 
  print(digits=3)

models_univariate %>% 
  mutate(boot = map(object, ~ tibble(n = 1:3, boot =head(setar.boot(., seed = 123, returnStarting = TRUE), 3)))) %>% 
  select(-object) %>% 
  unnest(boot)  %>% 
  spread(include, boot)%>% 
  as.data.frame() %>% 
  print(digits=3)

## add regime
models_univariate %>% 
  mutate(boot = map(object, ~ setar.boot(., seed = 123, add.regime = TRUE) %>% 
                      head(3) %>% 
                      as_tibble() %>% 
                      mutate(n = 1:3))) %>% 
  select(-object) %>% 
  unnest(boot)  %>% 
  gather(stat, value, res, regime) %>% 
  unite(stat_n, stat, n) %>% 
  spread(stat_n, value) %>% 
  as.data.frame() %>% 
  print(digits=3)

## add regime and starting
models_univariate %>% 
  mutate(boot = map(object, ~ setar.boot(., seed = 123, add.regime = TRUE, returnStarting = TRUE) %>% 
                      head(3) %>% 
                      as_tibble() %>% 
                      mutate(n = 1:3))) %>% 
  select(-object) %>% 
  unnest(boot)  %>% 
  gather(stat, value, res, regime) %>% 
  unite(stat_n, stat, n) %>% 
  spread(stat_n, value) %>% 
  as.data.frame() %>% 
  print(digits=3)

################
### test boot
################

setar.boot.check <-  function(object, round_digits = 10, ...) {
  mod_boot <- setar.boot(object, boot.scheme = "check", round_digits = round_digits, returnStarting = TRUE)  
  orig_series <- as.numeric(object$str$x)
  all.equal(mod_boot, orig_series, ...)
}

linear.boot.check <-  function(object, round_digits = 10) {
  mod_boot <- linear.boot(object, boot.scheme = "check",round_digits = round_digits, returnStarting = TRUE)  
  orig_series <- as.numeric(object$str$x)
  all.equal(mod_boot, orig_series)
}



## nthresh ==0
ar_1_noInc <- linear(log(lynx), m = 1, include = "none")
ar_2_noInc <- linear(log(lynx), m = 2, include = "none")
ar_1_const <- linear(log(lynx), m = 1, include = "const")
ar_2_const <- linear(log(lynx), m = 2, include = "const")


setar.boot.check(object=ar_1_noInc)
setar.boot.check(ar_2_noInc)
setar.boot.check(ar_1_const)
setar.boot.check(ar_2_const)

linear.boot.check(ar_1_noInc)
linear.boot.check(ar_2_noInc)
linear.boot.check(ar_1_const)
linear.boot.check(ar_2_const)



## nthresh ==1
set_1th_l1 <-  setar(lynx, nthresh=1, m=1)
set_1th_l2 <-  setar(lynx, nthresh=1, m=2)
set_1th_l1_tr <-  setar(lynx, nthresh=1, m=1, include = "trend")



## lot of problems with numerical instability on other platforms, unreliable tests
if(FALSE){
  setar.boot.check(object=set_1th_l1, round_digits = 10, tol=1e-6)
  setar.boot.check(set_1th_l1, round_digits = 2)
  setar.boot.check(set_1th_l2, tol=1e-1)
  setar.boot.check(set_1th_l2, round_digits = 5, tol=1e-1)
  setar.boot.check(set_1th_l1_tr, round_digits = 1)
}



## why difference?
if(FALSE) {
  library(ggplot)
  getTh(set_1th_l2)
  filt_diff <-  function(x, minus=2, tol =1) {
    x2 <- x %>% 
      mutate(diff = x$boot - x$orig)
    first <- which(abs(x2$diff)>tol)[1]
    filter(x2, between(n_row, first -minus, first +minus))
  }
  set_1th_l2_b <- setar.boot(setarObject = set_1th_l2, boot.scheme = "check", round_digits = 7)
  
  df_comp <- tibble(orig = lynx, boot = set_1th_l2_b) %>% 
    mutate(n_row = 1:n(),
           th1 = getTh(set_1th_l1_tr)[1],
           th2 = getTh(set_1th_l1_tr)[2],
           reg = regime(set_1th_l1_tr)) 
  
  df_comp %>% 
    filt_diff(tol = 0.01)   
  df_comp %>% 
    qplot(x=n_row, y = as.numeric(orig), data =., geom = "line") +
    geom_point(aes(colour = as.numeric(reg) %>%  factor))
    geom_line(aes(y = boot), colour = "red")
}

## nthresh == 2

### boot
set_2th_l1 <-  setar(lynx, nthresh=2, m=1)
set_2th_l2 <-  setar(lynx, nthresh=2, m=2)
set_2th_l1_tr <-  setar(lynx, nthresh=2, m=1, include = "trend")


setar.boot.check(set_2th_l1)
# setar.boot.check(set_2th_l2, round_digits = 2, countEQ=TRUE, scale=1) ## big diffs
# isTRUE(setar.boot.check(set_2th_l1_tr)) ## explsive!
# setar.boot.check(set_2th_l1_tr, round_digits = 2, tol=0.0001) # explsoive too!

################
### tets sim
################

## nthresh ==0
set.seed(123)
innov_1 <-  rnorm(200)
sim_nth0 <- setar.sim(B=0.5, lag=1, nthresh=0, 
                      include ="none",
                      starting= 0.4,
                      innov=innov_1,
                      show.parMat = TRUE)

head(sim_nth0)

## nthresh ==1
Bvals <- c(2.9,-0.4,-0.1, 2, 0.2,0.3)
sim_new <- setar.sim(B=Bvals,lag=2, nthresh=1, Thresh=2, starting=c(2.8,2.2),
                     innov=innov_1, show.parMat = TRUE)

head(sim_new)

Try the tsDyn package in your browser

Any scripts or data that you put into this service are public.

tsDyn documentation built on Oct. 31, 2024, 5:08 p.m.