Nothing
tsb <- function(data,h=10,w=NULL,init=c("mean","naive"),
cost=c("mar","msr","mae","mse"),
init.opt=c(TRUE,FALSE),outplot=c(FALSE,TRUE),
opt.on=c(FALSE,TRUE),na.rm=c(FALSE,TRUE)){
# TSB method
#
# Inputs:
# data Intermittent demand time series.
# h Forecast horizon.
# w Smoothing parameters. If w == NULL then parameters are optimised.
# Otherwise first parameter is for demand and second for demand probability.
# init Initial values for demand and intervals. This can be:
# c(z,x) - Vector of two scalars, where first is initial demand and
# second is initial interval;
# "naive" - Initial demand is first non-zero demand and initial demand
# probability is again the first one;
# "mean" - Same as "naive", but initial demand probability is the mean
# of all in sample probabilities.
# cost Cost function used for optimisation
# "mar" - Mean absolute rate
# "msr" - Mean squared rate
# "mae" - Mean absolute error
# "mse" - Mean squared error
# init.opt If init.opt==TRUE then initial values are optimised.
# outplot If TRUE a plot of the forecast is provided.
# opt.on This is meant to use only by the optimisation function. When opt.on is
# TRUE then no checks on inputs are performed.
# na.rm A logical value indicating whether NA values should be remove using the method.
#
# Outputs:
# model Type of model fitted.
# frc.in In-sample demand rate.
# frc.out Out-of-sample demand rate.
# weights Smoothing parameters for demand and demand probability.
# initial Initialisation values for demand and demand probability smoothing.
#
# Example:
# tsb(ts.data1,outplot=TRUE)
#
# Notes:
# Optimisation of the method described in:
# N. Kourentzes, 2014, On intermittent demand model optimisation and selection,
# International Journal of Production Economics, 156: 180-190.
# http://dx.doi.org/10.1016/j.ijpe.2014.06.007
# http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection/
#
# Nikolaos Kourentzes, 2014 <nikolaos@kourentzes.com>
# Defaults
cost <- cost[1]
init.opt <- init.opt[1]
outplot <- outplot[1]
opt.on <- opt.on[1]
na.rm <- na.rm[1]
if (!is.numeric(init)){
init <- init[1]
} else {
if (length(init>=2)){
init <- init[1:2]
} else {
init <- "mean"
}
}
# Prepare data
if (isa(data,"data.frame")){
if (ncol(data)>1){
warning("Data frame with more than one columns. Using only first one.")
}
data <- data[[1]]
}
if (na.rm == TRUE){
data <- data[!is.na(data)]
}
n <- length(data)
# TSB decomposition
p <- as.numeric(data!=0) # Demand probability
z <- data[data!=0] # Non-zero demand
# Initialise
if (!(is.numeric(init) && length(init)==2)){
if (init=="mean"){
init <- c(z[1],mean(p))
} else {
init <- c(z[1],p[1])
}
}
# Optimise parameters if requested
if (opt.on == FALSE){
if (is.null(w) || init.opt == TRUE){
wopt <- tsb.opt(data,cost,w,init,init.opt)
w <- wopt$w
init <- wopt$init
} else {
if (length(w)!=2){
stop(paste("w must be a vector of 2 elements: the smoothing parameter",
" for the non-zero demand and the parameter for the ",
"probability of demand.",sep=""))
}
}
}
# Pre-allocate memory
zfit <- vector("numeric",n)
pfit <- vector("numeric",n)
# Assign initial values and parameters
if (opt.on == FALSE){
if (init[1]<0){
stop("Initial demand cannot be a negative number.")
}
if (init[2]<0){
stop("Initial demand probability cannot be a negative number.")
}
}
zfit[1] <- init[1]
pfit[1] <- init[2]
# Fit model
for (i in 2:n){
pfit[i] <- pfit[i-1] + w[2]*(p[i]-pfit[i-1]) # Demand probability
if (p[i]==0){
zfit[i] <- zfit[i-1]
} else {
zfit[i] <- zfit[i-1] + w[1]*(data[i]-zfit[i-1]) # Demand
}
}
yfit <- pfit*zfit
frc.in <- c(NA,yfit[1:(n-1)])
if (h>0){
frc.out <- rep(yfit[n],h)
} else {
frc.out = NULL
}
# Plot
if (outplot==TRUE){
plot(1:n,data,type="l",xlim=c(1,(n+h)),xlab="Period",ylab="",
xaxs="i",yaxs="i",ylim=c(0,max(data)*1.1))
lines(which(data>0),data[data>0],type="p",pch=20)
lines(1:n,frc.in,col="red")
lines((n+1):(n+h),frc.out,col="red",lwd=2)
}
return(list(model="tsb",frc.in=frc.in,frc.out=frc.out,
weights=w,initial=c(zfit[1],pfit[1])))
}
#-------------------------------------------------
tsb.opt <- function(data,cost=c("mar","msr","mae","mse"),w=NULL,
init,init.opt=c(TRUE,FALSE)){
# Optimisation function for TSB
cost <- cost[1]
init.opt <- init.opt[1]
if (is.null(w) == TRUE && init.opt == TRUE){
# Optimise w and init
p0 <- c(rep(0.05,2),init[1],init[2])
lbound <- c(0,0,0,0)
ubound <- c(1,1,max(data),1)
wopt <- optim(par=p0,tsb.cost,method="Nelder-Mead",data=data,cost=cost,
w=w,w.opt=is.null(w),init=init,init.opt=init.opt,
lbound=lbound,ubound=ubound,control=list(maxit = 2000))$par
} else if (is.null(w) == TRUE && init.opt == FALSE){
# Optimise only w
p0 <- c(rep(0.05,2))
lbound <- c(0,0)
ubound <- c(1,1)
wopt <- optim(par=p0,tsb.cost,method="Nelder-Mead",data=data,cost=cost,
w=w,w.opt=is.null(w),init=init,init.opt=init.opt,
lbound=lbound,ubound=ubound,control=list(maxit = 2000))$par
wopt <- c(wopt,init)
} else if (is.null(w) == FALSE && init.opt == TRUE){
# Optimise only init
p0 <- c(init[1],init[2])
lbound <- c(0,0)
ubound <- c(max(data),1)
wopt <- optim(par=p0,tsb.cost,method="Nelder-Mead",data=data,cost=cost,
w=w,w.opt=is.null(w),init=init,init.opt=init.opt,
lbound=lbound,ubound=ubound,control=list(maxit = 2000))$par
wopt <- c(w,wopt)
}
return(list(w=wopt[1:2],init=wopt[3:4]))
}
#-------------------------------------------------
tsb.cost <- function(p0,data,cost,w,w.opt,init,init.opt,lbound,ubound){
# Cost functions for TSB
if (w.opt == TRUE && init.opt == TRUE){
frc.in <- tsb(data=data,w=p0[1:2],h=0,init=p0[3:4],opt.on=TRUE)$frc.in
} else if (w.opt == TRUE && init.opt == FALSE){
frc.in <- tsb(data=data,w=p0[1:2],h=0,init=init,opt.on=TRUE)$frc.in
} else if (w.opt == FALSE && init.opt == TRUE){
frc.in <- tsb(data=data,w=w,h=0,init=p0[1:2],opt.on=TRUE)$frc.in
}
if (cost == "mse"){
E <- data - frc.in
E <- E[!is.na(E)]
E <- mean(E^2)
} else if(cost == "mae"){
E <- data - frc.in
E <- E[!is.na(E)]
E <- mean(abs(E))
} else if(cost == "mar"){
n <- length(data)
temp <- cumsum(data)/(1:n)
n <- ceiling(0.3*n)
temp[1:n] <- temp[n]
E <- abs(frc.in - temp)
E <- E[!is.na(E)]
E <- sum(E)
} else if(cost == "msr"){
n <- length(data)
temp <- cumsum(data)/(1:n)
n <- ceiling(0.3*n)
temp[1:n] <- temp[n]
E <- (frc.in - temp)^2
E <- E[!is.na(E)]
E <- sum(E)
}
# Bounds
for (i in 1:(2*w.opt+2*init.opt)){
if (!p0[i]>=lbound[i] | !p0[i]<=ubound[i]){
E <- 9*10^99
}
}
# Parameter of demand probability must be smaller than parameter of demand
if (w.opt == TRUE){
if (p0[1] < p0[2]){
E <- 9*10^99
}
}
return(E)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.