Nothing
#' @keywords internal
#'
#' @useDynLib updog
#' @importFrom Rcpp sourceCpp
#' @importFrom RcppArmadillo armadillo_version
#' @importFrom ggplot2 ggplot
#' @importFrom assertthat assert_that
#' @importFrom foreach %dopar%
#' @importFrom doRNG %dorng%
#' @import doFuture
#' @importFrom foreach foreach
#' @importFrom methods as
"_PACKAGE"
#' The Beta-Binomial Distribution
#'
#' Density, distribution function, quantile function and random generation
#' for the beta-binomial distribution when parameterized
#' by the mean \code{mu} and the overdispersion parameter \code{rho}
#' rather than the typical shape parameters.
#'
#'
#' Let \eqn{\mu} and \eqn{\rho} be the mean and overdispersion parameters.
#' Let \eqn{\alpha} and \eqn{\beta} be the usual shape parameters of
#' a beta distribution. Then we have the relation
#' \deqn{\mu = \alpha/(\alpha + \beta),}
#' and
#' \deqn{\rho = 1/(1 + \alpha + \beta).}
#' This necessarily means that
#' \deqn{\alpha = \mu (1 - \rho)/\rho,}
#' and
#' \deqn{\beta = (1 - \mu) (1 - \rho)/\rho.}
#'
#' @param x,q A vector of quantiles.
#' @param p A vector of probabilities.
#' @param n The number of observations.
#' @param size A vector of sizes.
#' @param mu Either a scalar of the mean for each observation,
#' or a vector of means of each observation, and thus
#' the same length as \code{x} and \code{size}. This must
#' be between 0 and 1.
#' @param rho Either a scalar of the overdispersion parameter
#' for each observation, or a vector of overdispersion
#' parameters of each observation, and thus the same length as
#' \code{x} and \code{size}. This must be between 0 and 1.
#' @param log,log_p A logical vector either of length 1 or the same
#' length as \code{x} and \code{size}. This determines whether
#' to return the log probabilities for all observations
#' (in the case that its length is 1) or for
#' each observation (in the case that
#' its length is that of \code{x} and \code{size}).
#'
#' @name betabinom
#'
#' @author David Gerard
#'
#' @return Either a random sample (\code{rbetabinom}),
#' the density (\code{dbetabinom}), the tail
#' probability (\code{pbetabinom}), or the quantile
#' (\code{qbetabinom}) of the beta-binomial distribution.
#'
#' @examples
#' x <- rbetabinom(n = 10, size = 10, mu = 0.1, rho = 0.01)
#' dbetabinom(x = 1, size = 10, mu = 0.1, rho = 0.01, log = FALSE)
#' pbetabinom(q = 1, size = 10, mu = 0.1, rho = 0.01, log_p = FALSE)
#' qbetabinom(p = 0.6, size = 10, mu = 0.1, rho = 0.01)
#'
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.