R/varbvsbin.R

# Part of the varbvs package, https://github.com/pcarbo/varbvs
#
# Copyright (C) 2012-2018, Peter Carbonetto
#
# This program is free software: you can redistribute it under the
# terms of the GNU General Public License; either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANY; without even the implied warranty of
# MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# Implements the fully-factorized variational approximation for
# Bayesian variable selection in logistic regression. It finds the
# "best" fully-factorized variational approximation to the posterior
# distribution of the coefficients in a logistic regression model of a
# binary outcome, with spike and slab priors on the coefficients. By
# "best", we mean the approximating distribution that locally
# minimizes the K-L divergence between the approximating distribution
# and the exact posterior.
#
# Input X is the n x p matrix of variable (or feature) observations,
# where n is the number of samples, and p is the number of variables.
# Input y contains samples of the binary outcome; it is a vector of
# length n.
#
# Inputs sa and logodds are the hyperparameters. Scalar sa is the
# prior variance of the coefficients. Input logodds is the prior
# log-odds of inclusion for each variable.  Note that the prior
# log-odds here is defined with respect to the *natural* logarithm,
# whereas in function varbvs the prior log-odds is defined with
# respect to the base-10 logarithm, so a scaling factor of log(10) is
# needed to convert from the latter to the former. Also, note that the
# residual variance parameter (sigma) is not needed to model a binary
# outcome.
#
# Output logw is the variational estimate of the marginal
# log-likelihood given the hyperparameters at each iteration of the
# co-ordinate ascent optimization procedure. Output err is the maximum
# difference between the approximate posterior probabilities (alpha)
# at successive iterations. Outputs alpha, mu and s are the
# parameters of the variational approximation and, equivalently,
# variational estimates of posterior quantites: under the variational
# approximation, the ith regression coefficient is normal with
# probability alpha[i]; mu[i] and s[i] are the mean and variance of
# the coefficient given that it is included in the model. Output eta
# is the vector of free parameters that specify the variational
# approximation to the likelihood factors in the logistic regression.
varbvsbin <- function (X, y, sa, logodds, alpha, mu, eta, update.order,
                       tol = 1e-4, maxiter = 1e4, verbose = TRUE,
                       outer.iter = NULL, update.sa = TRUE,
                       optimize.eta = TRUE, n0 = 10, sa0 = 1) {

  # Get the number of samples (n) and variables (p).
  n <- nrow(X)
  p <- ncol(X)

  # (1) INITIAL STEPS
  # -----------------
  # Compute a few useful quantities.
  Xr    <- c(X %*% (alpha*mu))
  stats <- updatestats_varbvsbin(X,y,eta)
  s     <- sa/(sa*stats$xdx + 1)

  # Initialize storage for outputs logw and err.
  logw <- rep(0,maxiter)
  err  <- rep(0,maxiter)
  
  # (2) MAIN LOOP
  # -------------
  # Repeat until convergence criterion is met, or until the maximum
  # number of iterations is reached.
  for (iter in 1:maxiter) {

    # Save the current variational parameters and model parameters.
    alpha0 <- alpha
    mu0    <- mu
    s0     <- s
    eta0   <- eta
    sa.old <- sa

    # (2a) COMPUTE CURRENT VARIATIONAL LOWER BOUND
    # --------------------------------------------
    # Compute variational lower bound to marginal log-likelihood.
    logw0 <- int.logit(y,stats,alpha,mu,s,Xr,eta) +
             int.gamma(logodds,alpha) +
             int.klbeta(alpha,mu,s,sa)

    # (2b) UPDATE VARIATIONAL APPROXIMATION
    # -------------------------------------
    # Run a forward or backward pass of the coordinate ascent updates.
    out   <- varbvsbinupdate(X,sa,logodds,stats,alpha,mu,Xr,update.order)
    alpha <- out$alpha
    mu    <- out$mu
    Xr    <- out$Xr
    rm(out)

    # (2c) UPDATE ETA
    # ---------------
    # Update the free parameters specifying the variational approximation
    # to the logistic regression factors.
    if (optimize.eta) {
      eta   <- update_eta(X,y,betavar(alpha,mu,s),Xr,stats$d)
      stats <- updatestats_varbvsbin(X,y,eta)
      s     <- sa/(sa*stats$xdx + 1)
    }

    # (2d) COMPUTE UPDATED VARIATIONAL LOWER BOUND
    # --------------------------------------------
    # Compute variational lower bound to marginal log-likelihood.
    logw[iter] <- int.logit(y,stats,alpha,mu,s,Xr,eta) +
                  int.gamma(logodds,alpha) +
                  int.klbeta(alpha,mu,s,sa)

    # (2e) UPDATE PRIOR VARIANCE OF REGRESSION COEFFICIENTS
    # -----------------------------------------------------
    # Compute the maximum a posteriori estimate of sa, if requested.
    # Note that we must also recalculate the variance of the
    # regression coefficients when this parameter is updated.
    if (update.sa) {
      sa <- (sa0*n0 + dot(alpha,s + mu^2))/(n0 + sum(alpha))
      s  <- sa/(sa*stats$xdx + 1)
    }

    # (2f) CHECK CONVERGENCE
    # ----------------------
    # Print the status of the algorithm and check the convergence
    # criterion. Convergence is reached when the maximum relative
    # difference between the parameters at two successive iterations
    # is less than the specified tolerance, or when the variational
    # lower bound has decreased. I ignore parameters that are very
    # small. If the variational bound decreases, stop.
    err[iter] <- max(abs(alpha - alpha0))
    if (verbose) {
      if (is.null(outer.iter))
        status <- NULL
      else
        status <- sprintf("%05d ",outer.iter)
      progress.str <-
          paste(status,sprintf("%05d %+13.6e %0.1e %06.1f      NA %0.1e",
                               iter,logw[iter],err[iter],sum(alpha),sa),sep="")
      cat(progress.str,"\n")
    }
    if (logw[iter] < logw0) {
      logw[iter]  <- logw0
      err[iter]   <- 0
      sa          <- sa.old
      alpha       <- alpha0
      mu          <- mu0
      s           <- s0
      eta         <- eta0
      break
    } else if (err[iter] < tol)
      break
  }

  # Return the variational estimates.
  return(list(logw = logw[1:iter],err = err[1:iter],sa = sa,
              alpha = alpha,mu = mu,s = s,eta = eta))
}

# ----------------------------------------------------------------------
# Calculates useful quantities for updating the variational approximation
# to the logistic regression factors.
updatestats_varbvsbin <- function (X, y, eta) {

  # Compute the slope of the conjugate.
  d <- slope(eta)

  # Compute beta0 and yhat. See the journal paper for an explanation
  # of these two variables.
  beta0 <- sum(y - 0.5)/sum(d)
  yhat  <- y - 0.5 - beta0*d

  # Calculate xy = X'*yhat and xd = X'*d.
  xy <- c(yhat %*% X)
  xd <- c(d %*% X)

  # Compute the diagonal entries of X'*dhat*X. For a definition of
  # dhat, see the Bayesian Analysis journal paper.
  #
  # This is the less numerically stable version of this update:
  # 
  #   xdx <- diagsq(X,d) - xd^2/sum(d)
  # 
  dzr <- d/sqrt(sum(d))
  xdx <- diagsq(X,d) - c(dzr %*% X)^2

  # Return the result.
  return(list(d = d,yhat = yhat,xy = xy,xd = xd,xdx = xdx))
}

# ----------------------------------------------------------------------
# Computes the M-step update for the parameters specifying the
# variational lower bound to the logistic regression factors. Input Xr
# must be Xr = X*r, where r is the posterior mean of the coefficients.
# Note that under the fully-factorized variational approximation, r =
# alpha*mu. Input v is the posterior variance of the coefficients. For
# this update to be valid, it is required that the posterior
# covariance of the coefficients is equal to diag(v). Input d must be
# d = slope(eta); see function 'slope' for details.
update_eta <- function (X, y, v, Xr, d) {
  
  # Compute mu0, the posterior mean of the intercept in the logistic
  # regression under the variational approximation. Here, a is the
  # conditional variance of the intercept given the other coefficients.
  a   <- 1/sum(d)
  mu0 <- a*(sum(y - 0.5) - dot(d,Xr))

  # Compute s0, the (marginal) posterior variance of the intercept in the
  # logistic regression.
  xd <- c(d %*% X)
  s0 <- a*(1 + a*dot(v,xd^2))
  
  # Calculate the covariance between the intercept and coefficients.
  w <- (-a*xd*v)

  # This is the M-step update for the free parameters.
  return(sqrt((mu0 + Xr)^2 + s0 + diagsqt(X,v) + 2*c(X %*% w)))
}

# ----------------------------------------------------------------------
# Computes an integral that appears in the variational lower bound of
# the marginal log-likelihood for the logistic regression model. This
# integral is an approximation to the expectation of the logistic
# regression log-likelihood taken with respect to the variational
# approximation.
int.logit <- function (y, stats, alpha, mu, s, Xr, eta) {

  # Get some of the statistics.
  yhat <- stats$yhat
  xdx  <- stats$xdx
  d    <- stats$d

  # Get the variance of the intercept given the other coefficients.
  a <- 1/sum(d)

  # Compute the variational approximation to the expectation of the
  # log-likelihood with respect to the variational approximation.
  return(sum(logsigmoid(eta)) + dot(eta,d*eta - 1)/2 + log(a)/2 +
         a*sum(y - 0.5)^2/2 + dot(yhat,Xr) - quadnorm(Xr,d)^2/2 +
         a*dot(d,Xr)^2/2 - dot(xdx,betavar(alpha,mu,s))/2)
}

Try the varbvs package in your browser

Any scripts or data that you put into this service are public.

varbvs documentation built on June 7, 2023, 5:43 p.m.