Nothing
`kendall.post` <-
function(Y, group, nperm=999, mult="holm")
{
### Function to carry out a posteriori tests on individual judges (e.g. species)
### for a single group or several groups of judges.
###
### copyleft - Guillaume Blanchet and Pierre Legendre, October 2008
################################################################################
mult <- match.arg(mult, c("sidak", p.adjust.methods))
##CC# Make sure Y is a matrix and find number of rows and columns of Y
Y <- as.matrix(Y)
p <- ncol(Y)
if(p < 2) stop("there is only one variable in the data matrix")
##CC# Transform the species abundances to ranks, by column
R <- apply(Y,2,rank)
if(missing(group)) group <- rep(1,p)
if(length(group) != p){
stop("the number of species in the vector differs from the total number of species")
}
##CC# Separate tests for the variables in each group
group <- as.factor(group)
gr.lev <- levels(group)
ngr <- nlevels(group)
gr <- as.list(1:ngr)
n.per.gr <- vector(length=ngr)
for(i in 1:ngr){
gr[[i]] <- which(group==gr.lev[i])
n.per.gr[i] <- length(gr[[i]]) # Vector with the number of
# variables per group
}
##===============================
##CC# start permutation procedure
##===============================
##CC# Initialize the counters
counter <- as.list(1:ngr)
for(i in 1:ngr){
counter[[i]] <- vector(length = n.per.gr[i])
}
W.gr <- vector("list",ngr)
if(ngr > 1) spear.gr <- vector("list",ngr)
for(i in 1:ngr){
p.i <- n.per.gr[i]
if(p.i < 2) stop(gettextf("there is only one variable in group %d",
gr.lev[i]))
#CC# Extract variables part of
#group i
R.gr <- R[,gr[[i]]] # Table with species of group 'i' only
#as columns CC# Calculate the
#mean of the Spearman
#correlations for each species
#in a group
spear.mat <- cor(R.gr)
diag(spear.mat) <- NA
spear.mean <- apply(spear.mat, 1, mean, na.rm=TRUE)
#CC# Calculate Kendall's W for each variable
W.var <- ((p.i-1)*spear.mean+1)/p.i
#for(j in 1:n.per.gr[i]){
for(j in 1:p.i){ # Test each species in turn
#CC# Create a new R where the
#permuted variable has been
#removed
R.gr.mod <- R.gr[,-j]
##CC# Set counter
counter[[i]][j] <- 1
##CC# The actual permutation procedure
for(k in 1:nperm){
var.perm <- sample(R.gr[,j])
spear.mat.perm <- cor(cbind(R.gr.mod, var.perm))
diag(spear.mat.perm) <- NA
spear.mean.j.perm <- mean(spear.mat.perm[p.i,], na.rm=TRUE)
W.perm <- ((p.i-1)*spear.mean.j.perm+1)/p.i
if(W.perm >= W.var[j]) counter[[i]][j] <- counter[[i]][j]+1
}
}
W.gr[[i]] <- W.var
if(ngr > 1) spear.gr[[i]] <- spear.mean
}
##CC# Calculate P-values
for(i in 1:ngr) {
counter[[i]] <- counter[[i]]/(nperm+1)
}
## Correction to P-values for multiple testing
## Write all P-values to a long vector 'vec'
vec <- counter[[1]]
if(ngr > 1) {
for(i in 2:ngr) vec = c(vec, counter[[i]])
}
if(length(vec) != p) stop("error in putting together vector 'vec'")
if(mult == "sidak") {
vec.corr = NA
for(i in 1:p) vec.corr = c(vec.corr, (1-(1-vec[i])^p))
vec.corr <- vec.corr[-1]
} else {
vec.corr <- p.adjust(vec, method=mult)
}
if(ngr > 1) {
vec.gr <- vector("list",ngr)
end <- 0
for(i in 1:ngr){
beg <- end+1
end <- end + n.per.gr[i]
vec.gr[[i]] <- vec.corr[beg:end]
}
}
## Create data frames containing the results
if(ngr == 1) {
table <- rbind(spear.mean, W.var, counter[[1]], vec.corr)
rownames(table) <- c("Spearman.mean", "W.per.species", "Prob", "Corrected prob")
} else {
table <- as.list(1:ngr)
for(i in 1:ngr) {
table[[i]] <- rbind(spear.gr[[i]], W.gr[[i]], counter[[i]], vec.gr[[i]])
rownames(table[[i]]) <- c("Spearman.mean", "W.per.species", "Prob", "Corrected prob")
## PL: Next line had been lost
colnames(table[[i]]) <- colnames(table[[i]], do.NULL = FALSE,
prefix = "Spec")
}
}
if(ngr == 1) {
out <- list(A_posteriori_tests=table, Correction.type=mult)
} else {
out <- list(A_posteriori_tests_Group=table, Correction.type=mult)
}
#
class(out) <- "kendall.post"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.