Nothing
# Wallace EcoMod: a flexible platform for reproducible modeling of
# species niches and distributions.
#
# xfer_time.R
# File author: Wallace EcoMod Dev Team. 2023.
# --------------------------------------------------------------------------
# This file is part of the Wallace EcoMod application
# (hereafter “Wallace”).
#
# Wallace is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# Wallace is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Wallace. If not, see <http://www.gnu.org/licenses/>.
# --------------------------------------------------------------------------
#
xfer_time_module_ui <- function(id) {
ns <- shiny::NS(id)
tagList(
span("Step 1:", class = "step"),
span("Choose Study Region", class = "stepText"), br(), br(),
selectInput(ns('xferExt'), label = "Select method",
choices = list("Draw polygon" = 'xfDraw',
"Same extent" = 'xfCur',
"User-specified polygon" = 'xfUser')),
conditionalPanel(sprintf("input['%s'] == 'xfUser'", ns("xferExt")),
fileInput(
ns("userXfShp"),
label = paste0(
'Upload polygon in shapefile (.shp, .shx, .dbf) or ',
'CSV file with field order (longitude, latitude)'),
accept = c(".csv", ".dbf", ".shx", ".shp"),
multiple = TRUE),
tags$div(
title = paste0(
'Buffer area in degrees (1 degree = ~111 km). Exact',
' length varies based on latitudinal position.'),
numericInput(ns("userXfBuf"),
label = "Study region buffer distance (degree)",
value = 0, min = 0, step = 0.5)
)),
conditionalPanel(sprintf("input['%s'] == 'xfDraw'", ns("xferExt")),
p("Draw a polygon and select buffer distance"),
tags$div(
title = paste0(
'Buffer area in degrees (1 degree = ~111 km). Exact',
' length varies based on latitudinal position.'
),
numericInput(
ns("drawXfBuf"),
label = "Study region buffer distance (degree)",
value = 0, min = 0, step = 0.5)
)),
conditionalPanel(sprintf("input['%s'] == 'xfCur'", ns("xferExt")),
p('You will use the same extent')),
actionButton(ns("goXferExtTime"), "Create"), br(),
tags$hr(class = "hrDotted"),
span("Step 2:", class = "step"),
span("Transfer", class = "stepText"), br(),
p("Transfer model to extent (red) "),
radioButtons(ns('selTimeVar'), label = "Select source of variables",
choices = list("WorldClim" = "worldclim",
"ecoClimate" = "ecoclimate"),
inline = TRUE),
conditionalPanel(sprintf("input['%s'] == 'worldclim'", ns("selTimeVar")),
selectInput(ns("selTime"), label = "Select time period",
choices = list("Select period" = "",
"2021-2040" = "2021-2040",
"2041-2060" = "2041-2060",
"2061-2080" = "2061-2080")),
selectInput(ns("selGCM"), label = "Select global circulation model",
choices = list("Select GCM" = "",
"ACCESS-CM2" = "ACCESS-CM2",
"ACCESS-ESM1-5" = "ACCESS-ESM1-5",
"AWI-CM-1-1-MR" = "AWI-CM-1-1-MR",
"BCC-CSM2-MR" = "BCC-CSM2-MR",
"CanESM5" = "CanESM5",
"CanESM5-CanOE" = "CanESM5-CanOE",
"CMCC-ESM2" = "CMCC-ESM2",
"CNRM-CM6-1" = "CNRM-CM6-1",
"CNRM-CM6-1-HR" = "CNRM-CM6-1-HR",
"CNRM-ESM2-1" = "CNRM-ESM2-1",
"EC-Earth3-Veg" = "EC-Earth3-Veg",
"EC-Earth3-Veg-LR" = "EC-Earth3-Veg-LR",
"GISS-E2-1-G" = "GISS-E2-1-G",
"GISS-E2-1-H" = "GISS-E2-1-H",
"INM-CM4-8" = "INM-CM4-8",
"INM-CM5-0" = "INM-CM5-0",
"IPSL-CM6A-LR" = "IPSL-CM6A-LR",
"MIROC-ES2L" = "MIROC-ES2L",
"MIROC6" = "MIROC6",
"MPI-ESM1-2-HR" = "MPI-ESM1-2-HR",
"MPI-ESM1-2-LR" = "MPI-ESM1-2-LR",
"MRI-ESM2-0" = "MRI-ESM2-0",
"UKESM1-0-LL" = "UKESM1-0-LL")),
selectInput(ns('selRCP'), label = "Select shared socioeconomic pathway",
choices = list("Select SSP" = "",
"126" = "126",
"245" = "245",
"370" = "370",
"585" = "585"))),
conditionalPanel(sprintf("input['%s'] == 'ecoclimate'", ns("selTimeVar")),
tags$div(title = 'Select AOGCM',
selectInput(ns("xfAOGCM"),
label = "Select the Atmospheric Oceanic General Circulation Model you want to use",
choices = list("Select AOGCMs" = "",
"CCSM" = "CCSM",
"CNRM" = "CNRM",
"MIROC" = "MIROC",
"FGOALS" = "FGOALS",
"GISS" = "GISS",
"IPSL" = "IPSL",
"MRI" = "MRI",
"MPI" = "MPI")
)),
tags$div(title = 'Select Scenario',
selectInput(ns("xfScenario"),
label = "select the temporal scenario that you want to use",
choices = list("Select Scenario" = "",
"2080-2100 RCP 2.6" = "Future 2.6",
"2080-2100 RCP 4.5" = "Future 4.5",
"2080-2100 RCP 6" = "Future 6",
"2080-2100 RCP 8.5" = "Future 8.5",
"Holocene (6,000 years ago)" = "Holo",
"LGM (21,000 years ago)" = "LGM")
))),
tags$div(title = paste0('Create binary map of predicted presence/absence ',
'assuming all values above threshold value represent ',
'presence. Also can be interpreted as a "potential ',
'distribution" (see guidance).'),
selectInput(ns('threshold'), label = "Set threshold",
choices = list("No threshold" = 'none',
"Minimum Training Presence" = 'mtp',
"10 Percentile Training Presence" = 'p10',
"Quantile of Training Presences" = 'qtp'))),
conditionalPanel(sprintf("input['%s'] == 'qtp'", ns("threshold")),
sliderInput(ns("trainPresQuantile"), "Set quantile",
min = 0, max = 1, value = .05)),
conditionalPanel(paste0("input['", ns("threshold"), "'] == 'none'"),
uiOutput(ns("noThrs"))),
actionButton(ns('goTransferTime'), "Transfer"),
tags$hr(class = "hrDashed"),
actionButton(ns("goResetXfer"), "Reset", class = 'butReset'),
strong(" extent of transfer")
)
}
xfer_time_module_server <- function(input, output, session, common) {
spp <- common$spp
evalOut <- common$evalOut
envs <- common$envs
rmm <- common$rmm
curSp <- common$curSp
curModel <- common$curModel
logger <- common$logger
output$noThrs <- renderUI({
ns <- session$ns
req(curSp(), evalOut())
if (spp[[curSp()]]$rmm$model$algorithms != "BIOCLIM") {
h5("Prediction output is the same as Visualize component")
}
})
GCMlookup <- c(AC = "ACCESS1-0", BC = "BCC-CSM1-1", CC = "CCSM4",
CE = "CESM1-CAM5-1-FV2", CN = "CNRM-CM5", GF = "GFDL-CM3",
GD = "GFDL-ESM2G", GS = "GISS-E2-R", HD = "HadGEM2-AO",
HG = "HadGEM2-CC", HE = "HadGEM2-ES", IN = "INMCM4",
IP = "IPSL-CM5A-LR", ME = "MPI-ESM-P", MI = "MIROC-ESM-CHEM",
MR = "MIROC-ESM", MC = "MIROC5", MP = "MPI-ESM-LR",
MG = "MRI-CGCM3", NO = "NorESM1-M")
# dynamic ui for GCM selection: choices differ depending on choice of time period
# 7/16/2024: BAJ removed after geodata & WCv2.1 update, but kept in case needed later
# output$selGCMui <- renderUI({
# ns <- session$ns
#
# if (input$selTime == 'lgm') {
# gcms <- c('CC', 'MR', 'MC')
# } else if (input$selTime == 'mid') {
# gcms <- c("BC", "CC", "CE", "CN", "HG", "IP", "MR", "ME", "MG")
# } else {
# gcms <- c("AC", "BC", "CC", "CE", "CN", "GF", "GD", "GS", "HD",
# "HG", "HE", "IN", "IP", "MI", "MR", "MC", "MP", "MG", "NO")
# }
# names(gcms) <- GCMlookup[gcms]
# gcms <- as.list(c("Select GCM" = "", gcms))
# selectInput(ns("selGCM"), label = "Select global circulation model",
# choices = gcms)
# })
observeEvent(input$goXferExtTime, {
# ERRORS ####
if (is.null(spp[[curSp()]]$visualization$mapPred)) {
logger %>%
writeLog(
type = 'error',
'Calculate a model prediction in model component before transferring.'
)
return()
}
if (input$xferExt == 'xfDraw') {
if (is.null(spp[[curSp()]]$polyXfXY)) {
logger %>%
writeLog(
type = 'error',
paste0("The polygon has not been drawn and finished. Please use the ",
"draw toolbar on the left-hand of the map to complete the ",
"polygon.")
)
return()
}
}
if (input$xferExt == 'xfUser') {
if (is.null(input$userXfShp$datapath)) {
logger %>% writeLog(type = 'error', paste0("Specified filepath(s) "))
return()
}
}
# FUNCTION CALL ####
if (input$xferExt == 'xfDraw') {
polyXf <- xfer_draw(spp[[curSp()]]$polyXfXY, spp[[curSp()]]$polyXfID,
input$drawXfBuf, logger, spN = curSp())
if (input$drawXfBuf == 0 ) {
logger %>% writeLog(
hlSpp(curSp()), 'Draw polygon without buffer.')
} else {
logger %>% writeLog(
hlSpp(curSp()), 'Draw polygon with buffer of ', input$drawXfBuf,
' degrees.')
}
# METADATA ####
spp[[curSp()]]$rmm$code$wallace$XfBuff <- input$drawXfBuf
polyX <- printVecAsis(round(spp[[curSp()]]$polyXfXY[, 1], digits = 4))
polyY <- printVecAsis(round(spp[[curSp()]]$polyXfXY[, 2], digits = 4))
spp[[curSp()]]$rmm$code$wallace$drawExtPolyXfCoords <-
paste0('X: ', polyX, ', Y: ', polyY)
}
if (input$xferExt == 'xfUser') {
polyXf <- xfer_userExtent(input$userXfShp$datapath, input$userXfShp$name,
input$userXfBuf, logger, spN = curSp())
# METADATA ####
spp[[curSp()]]$rmm$code$wallace$XfBuff <- input$userXfBuf
# get extensions of all input files
exts <- sapply(strsplit(input$userXfShp$name, '\\.'),
FUN = function(x) x[2])
if('csv' %in% exts) {
spp[[curSp()]]$rmm$code$wallace$userXfExt <- 'csv'
spp[[curSp()]]$rmm$code$wallace$userXfPath <- input$userXfShp$datapath
}
else if('shp' %in% exts) {
spp[[curSp()]]$rmm$code$wallace$userXfExt <- 'shp'
# get index of .shp
i <- which(exts == 'shp')
shpName <- strsplit(input$userXfShp$name[i], '\\.')[[1]][1]
spp[[curSp()]]$rmm$code$wallace$userXfShpParams <-
list(dsn = input$userXfShp$datapath[i], layer = shpName)
}
}
if (input$xferExt == 'xfCur') {
polyXf <- spp[[curSp()]]$procEnvs$bgExt
logger %>% writeLog(
hlSpp(curSp()),
'Transfer extent equal to current extent region.')
}
# LOAD INTO SPP ####
spp[[curSp()]]$transfer$xfExt <- polyXf
common$update_component(tab = "Map")
})
observeEvent(input$goTransferTime, {
# ERRORS ####
if (is.null(spp[[curSp()]]$visualization$mapPred)) {
logger %>%
writeLog(
type = 'error',
'Calculate a model prediction in visualization component before transferring.')
return()
}
if (is.null(spp[[curSp()]]$transfer$xfExt)) {
logger %>% writeLog(type = 'error', 'Select extent of transfer first.')
return()
}
envsRes <- raster::res(envs())[1]
if (envsRes < 0.01) {
logger %>%
writeLog(type = 'error',
paste0('Transfer to New Time currently only available with ',
'resolutions >30 arc seconds.'))
return()
}
if(!all(names(envs()) %in% paste0('bio', sprintf("%02d", 1:19)))) {
nonBios <- names(envs())[!names(envs()) %in% paste0('bio', sprintf("%02d", 1:19))]
logger %>%
writeLog(type = 'error', hlSpp(curSp()),
"Your model is using non-bioclimatic variables or non-conventional",
" names (i.e., ", paste0(nonBios, collapse = ", "),
"). You can not transfer to a New Time.")
return()
}
if (input$selTimeVar == 'worldclim') {
# warnings for wc selections
if(input$selTime == "") {
logger %>% writeLog(type = 'error', "Please select transfer time period.")
return()
}
if(input$selGCM == "") {
logger %>% writeLog(type = 'error', "Please select global circulation model.")
return()
}
if(input$selRCP == "") {
logger %>% writeLog(type = 'error', "Please select a SSP.")
return()
}
} else if (input$selTimeVar == 'ecoclimate') {
# warnings for ecoclimate selections
if(input$xfAOGCM == "") {
logger %>% writeLog(type = 'error', "Please select transfer AOGCM.")
return()
}
if(input$xfScenario == "") {
logger %>% writeLog(type = 'error', "Please select transfer temporal scenario.")
return()
}
}
# DATA ####
if (input$selTimeVar == 'worldclim') {
# code taken from dismo getData() function to catch if user is trying to
# download a missing combo of gcm / rcp
# 7/16/2024: BAJ removed after geodata & WCv2.1 update, but kept in case needed later
# gcms <- c('AC', 'BC', 'CC', 'CE', 'CN', 'GF', 'GD', 'GS', 'HD', 'HG', 'HE',
# 'IN', 'IP', 'MI', 'MR', 'MC', 'MP', 'MG', 'NO')
# rcps <- c(26, 45, 60, 85)
# m <- matrix(c(0,1,1,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
# 1,1,1,1,1,1,1,0,1,1,0,0,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,1,1,0,1,
# 0,1,1,1,1,1,1,1,1,1,1,1,1,1), ncol = 4)
# i <- m[which(input$selGCM == gcms), which(input$selRCP == rcps)]
# if (!i) {
# logger %>%
# writeLog(type = 'error',
# paste0('This combination of GCM and RCP is not available. Please ',
# 'make a different selection.'))
# return()
# }
smartProgress(
logger,
message = paste("Retrieving WorldClim data for", input$selTime,
input$selRCP, "..."),
{
#BAJ eventually add 'if (res > 30){, cmip6_world(), }else use{ cmip6_tile()}
xferTimeEnvs <- tryCatch(expr = geodata::cmip6_world(model = input$selGCM,
ssp = input$selRCP,
time = input$selTime,
var = "bio",
res = round(envsRes * 60, 1),
path=tempdir()),
error= function(e) NULL)
#BAJ geodata::cmip6_tile(lon, lat, model, ssp, time, var, path) for 30arcsec tile
# trycatch error
if (is.null(xferTimeEnvs)) {
logger %>% writeLog(
type = "error",
paste0("Unable to retrieve data from WorldClim.
Server may be down.
Please use User-Specified module instead."))
return()
} else {
names(xferTimeEnvs) <- paste0('bio', c(paste0('0',1:9), 10:19))
# in case user subsetted bioclims
xferTimeEnvs <- xferTimeEnvs[[names(envs())]]
# convert spatraster to raster
xferTimeEnvs <- raster::stack(xferTimeEnvs)
}
}
)
} else if (input$selTimeVar == 'ecoclimate') {
smartProgress(
logger,
message = paste0("Retrieving ecoClimate data of GCM ", input$xfAOGCM,
" for ", input$xfScenario, "..."),
{
xferTimeEnvs <- envs_ecoClimate(input$xfAOGCM, input$xfScenario,
as.numeric(gsub("bio", "", names(envs()))),
logger)
}
)
}
# ERRORS ####
# Check that the extents of raster and extent of transfer intersects
Xfer_sfc <- sf::st_as_sfc(spp[[curSp()]]$transfer$xfExt) #convert poly to sfc
xferTimeEnvs_sp <- methods::as(raster::extent(xferTimeEnvs),'SpatialPolygons')
xferTimeEnvs_sfc <- sf::st_as_sfc(xferTimeEnvs_sp) #convert xfer envs to sfc
if (!sf::st_intersects(Xfer_sfc, xferTimeEnvs_sfc, sparse = FALSE)[1,1]) {
logger %>%
writeLog(type = 'error', 'Extents do not overlap.')
return()
}
# FUNCTION CALL ####
req(xferTimeEnvs)
predType <- rmm()$prediction$notes
if (spp[[curSp()]]$rmm$model$algorithms == "BIOCLIM") {
xferTime.out <- xfer_time(evalOut = evalOut(),
curModel = curModel(),
envs = xferTimeEnvs,
xfExt = spp[[curSp()]]$transfer$xfExt,
alg = spp[[curSp()]]$rmm$model$algorithms,
logger,
spN = curSp())
} else {
xferTime.out <- xfer_time(evalOut = evalOut(),
curModel = curModel(),
envs = xferTimeEnvs,
xfExt = spp[[curSp()]]$transfer$xfExt,
alg = spp[[curSp()]]$rmm$model$algorithms,
outputType = predType,
clamp = rmm()$model$algorithm$maxent$clamping,
logger,
spN = curSp())
}
xferExt <- xferTime.out$xferExt
xferTime <- xferTime.out$xferTime
# PROCESSING ####
# generate binary prediction based on selected thresholding rule
# (same for all Maxent prediction types because they scale the same)
occPredVals <- spp[[curSp()]]$visualization$occPredVals
if(!(input$threshold == 'none')) {
# use threshold from present-day model training area
if (input$threshold == 'mtp') {
thr <- stats::quantile(occPredVals, probs = 0)
} else if (input$threshold == 'p10') {
thr <- stats::quantile(occPredVals, probs = 0.1)
} else if (input$threshold == 'qtp'){
thr <- stats::quantile(occPredVals, probs = input$trainPresQuantile)
}
xferTimeThr <- xferTime > thr
if (input$selTimeVar == 'worldclim') {
logger %>% writeLog(hlSpp(curSp()), "Transfer of model to ", input$selTime,
' with threshold ', input$threshold, ' (',
formatC(thr, format = "e", 2), ") for GCM ",
input$selGCM, " under SSP ",
as.numeric(input$selRCP), ".")
} else if (input$selTimeVar == 'ecoclimate') {
logger %>% writeLog(hlSpp(curSp()), "Transfer of model to ", input$xfScenario,
' with threshold ', input$threshold, ' (',
formatC(thr, format = "e", 2), ") for GCM ",
input$xfAOGCM, ".")
}
} else {
xferTimeThr <- xferTime
if (input$selTimeVar == 'worldclim') {
logger %>% writeLog(hlSpp(curSp()), "Transfer of model to ", input$selTime,
' with ', predType, " output for GCM ", input$selGCM,
" under SSP ", as.numeric(input$selRCP), ".")
} else if (input$selTimeVar == 'ecoclimate') {
logger %>% writeLog(hlSpp(curSp()), "Transfer of model to ", input$xfScenario,
' with ', predType, " output for GCM ", input$xfAOGCM, ".")
}
}
raster::crs(xferTimeThr) <- raster::crs(envs())
# rename
names(xferTimeThr) <- paste0(curModel(), '_thresh_', predType)
# LOAD INTO SPP ####
spp[[curSp()]]$transfer$xfEnvs <- xferExt
spp[[curSp()]]$transfer$xferTimeEnvs <- xferTimeEnvs
spp[[curSp()]]$transfer$mapXfer <- xferTimeThr
spp[[curSp()]]$transfer$mapXferVals <- getRasterVals(xferTimeThr, predType)
if (input$selTimeVar == "worldclim") {
spp[[curSp()]]$transfer$xfEnvsDl <- paste0('CMIP5_', envsRes * 60, "min_SSP",
input$selRCP, "_", input$selGCM,
"_", input$selTime)
} else if (input$selTimeVar == "ecoclimate") {
spp[[curSp()]]$transfer$xfEnvsDl <- paste0('ecoClimate_', input$xfScenario,
'_', input$xfAOGCM)
}
# REFERENCES
knitcitations::citep(citation("dismo"))
# METADATA ####
spp[[curSp()]]$rmm$code$wallace$transfer_curModel <- curModel()
spp[[curSp()]]$rmm$code$wallace$transfer_time <- TRUE
spp[[curSp()]]$rmm$data$transfer$environment1$minVal <-
printVecAsis(raster::cellStats(xferExt, min), asChar = TRUE)
spp[[curSp()]]$rmm$data$transfer$environment1$maxVal <-
printVecAsis(raster::cellStats(xferExt, max), asChar = TRUE)
spp[[curSp()]]$rmm$data$transfer$environment1$resolution <-
paste(round(raster::res(xferExt)[1] * 60, digits = 2), "degrees")
spp[[curSp()]]$rmm$data$transfer$environment1$extentSet <-
printVecAsis(as.vector(xferExt@extent), asChar = TRUE)
spp[[curSp()]]$rmm$data$transfer$environment1$extentRule <-
"transfer to user-selected new time"
if (input$selTimeVar == "worldclim") {
xferYr <- input$selTime
###For RMD only
spp[[curSp()]]$rmm$code$wallace$transfer_worldclim <- TRUE
spp[[curSp()]]$rmm$code$wallace$transfer_GCM <- input$selGCM
spp[[curSp()]]$rmm$code$wallace$transfer_RCP <- input$selRCP
spp[[curSp()]]$rmm$code$wallace$transfer_Time <- input$selTime
spp[[curSp()]]$rmm$data$transfer$environment1$yearMin <- xferYr
spp[[curSp()]]$rmm$data$transfer$environment1$yearMax <- xferYr
spp[[curSp()]]$rmm$data$transfer$environment1$sources <- "WorldClim 2.1"
spp[[curSp()]]$rmm$data$transfer$environment1$notes <-
paste("transfer to year", xferYr, "for GCM",
input$selGCM, "under SSP",
as.numeric(input$selRCP))
} else if (input$selTimeVar == "ecoclimate") {
spp[[curSp()]]$rmm$code$wallace$transfer_ecoclimate <- TRUE
spp[[curSp()]]$rmm$code$wallace$transfer_AOGCM <- input$xfAOGCM
spp[[curSp()]]$rmd$transfer_Scenario <- input$xfScenario
spp[[curSp()]]$rmm$data$transfer$environment1$sources <- "ecoClimate"
spp[[curSp()]]$rmm$data$transfer$environment1$notes <-
paste("transfer to", input$xfScenario, "for GCM", input$xfAOGCM)
if (input$xfScenario == "LGM") {
spp[[curSp()]]$rmm$data$transfer$environment1$yearMin <- -21000
spp[[curSp()]]$rmm$data$transfer$environment1$yearMax <- -21000
} else if (input$xfScenario == "Holo") {
spp[[curSp()]]$rmm$data$transfer$environment1$yearMin <- -6000
spp[[curSp()]]$rmm$data$transfer$environment1$yearMax <- -6000
} else {
spp[[curSp()]]$rmm$data$transfer$environment1$yearMin <- 2080
spp[[curSp()]]$rmm$data$transfer$environment1$yearMax <- 2100
}
}
spp[[curSp()]]$rmm$prediction$transfer$environment1$units <-
ifelse(predType == "raw", "relative occurrence rate", predType)
spp[[curSp()]]$rmm$prediction$transfer$environment1$minVal <-
printVecAsis(raster::cellStats(xferTimeThr, min), asChar = TRUE)
spp[[curSp()]]$rmm$prediction$transfer$environment1$maxVal <-
printVecAsis(raster::cellStats(xferTimeThr, max), asChar = TRUE)
if(!(input$threshold == 'none')) {
spp[[curSp()]]$rmm$prediction$transfer$environment1$thresholdSet <- thr
if (input$threshold == 'qtp') {
spp[[curSp()]]$rmm$code$wallace$transferQuantile <- input$trainPresQuantile
} else {
spp[[curSp()]]$rmm$code$wallace$transferQuantile <- 0
}
} else {
spp[[curSp()]]$rmm$prediction$transfer$environment1$thresholdSet <- NULL
}
spp[[curSp()]]$rmm$prediction$transfer$environment1$thresholdRule <- input$threshold
if (!is.null(spp[[curSp()]]$rmm$model$algorithm$maxent$clamping)) {
spp[[curSp()]]$rmm$prediction$transfer$environment1$extrapolation <-
spp[[curSp()]]$rmm$model$algorithm$maxent$clamping
}
spp[[curSp()]]$rmm$prediction$transfer$notes <- NULL
common$update_component(tab = "Map")
})
# Reset Transfer Extent button functionality
observeEvent(input$goResetXfer, {
spp[[curSp()]]$polyXfXY <- NULL
spp[[curSp()]]$polyXfID <- NULL
spp[[curSp()]]$transfer <- NULL
logger %>% writeLog("Reset extent of transfer.")
})
return(list(
save = function() {
list(
xferExt = input$xferExt,
userXfBuf = input$userXfBuf,
drawXfBuf = input$drawXfBuf,
selTimeVar = input$selTimeVar,
selTime = input$selTime,
selRCP = input$selRCP,
xfAOGCM = input$xfAOGCM,
xfScenario = input$xfScenario,
threshold = input$threshold,
trainPresQuantile = input$trainPresQuantile
)
},
load = function(state) {
updateSelectInput(session, 'xferExt', selected = state$xferExt)
updateNumericInput(session, 'userXfBuf', value = state$userXfBuf)
updateNumericInput(session, 'drawXfBuf', value = state$drawXfBuf)
updateSelectInput(session, 'selTime', selected = state$selTime)
updateSelectInput(session, 'selRCP', selected = state$selRCP)
updateSelectInput(session, 'xfAOGCM', selected = state$xfAOGCM)
updateSelectInput(session, 'xfScenario', selected = state$xfScenario)
updateSelectInput(session, 'threshold', selected = state$threshold)
updateSliderInput(session, 'trainPresQuantile', value = state$trainPresQuantile)
}
))
}
xfer_time_module_map <- function(map, common) {
spp <- common$spp
evalOut <- common$evalOut
curSp <- common$curSp
rmm <- common$rmm
mapXfer <- common$mapXfer
# Map logic
map %>% leaflet.extras::addDrawToolbar(
targetGroup = 'draw', polylineOptions = FALSE, rectangleOptions = FALSE,
circleOptions = FALSE, markerOptions = FALSE, circleMarkerOptions = FALSE,
editOptions = leaflet.extras::editToolbarOptions()
)
# Add just transfer Polygon
req(spp[[curSp()]]$transfer$xfExt)
polyXfXY <- spp[[curSp()]]$transfer$xfExt@polygons[[1]]@Polygons
if(length(polyXfXY) == 1) {
shp <- list(polyXfXY[[1]]@coords)
} else {
shp <- lapply(polyXfXY, function(x) x@coords)
}
bb <- spp[[curSp()]]$transfer$xfExt@bbox
bbZoom <- polyZoom(bb[1, 1], bb[2, 1], bb[1, 2], bb[2, 2], fraction = 0.05)
map %>% clearAll() %>% removeImage('xferRas') %>%
fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4])
for (poly in shp) {
map %>% addPolygons(lng = poly[, 1], lat = poly[, 2], weight = 4,
color = "red",group = 'bgShp')
}
req(evalOut(), spp[[curSp()]]$transfer$xfEnvs)
mapXferVals <- spp[[curSp()]]$transfer$mapXferVals
rasCols <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
# if threshold specified
if(rmm()$prediction$transfer$environment1$thresholdRule != 'none') {
rasPal <- c('gray', 'red')
map %>% removeControl("xfer") %>%
addLegend("bottomright", colors = c('gray', 'red'),
title = "Thresholded Suitability<br>(Transferred)",
labels = c("predicted absence", "predicted presence"),
opacity = 1, layerId = 'xfer')
} else {
# if no threshold specified
legendPal <- colorNumeric(rev(rasCols), mapXferVals, na.color = 'transparent')
rasPal <- colorNumeric(rasCols, mapXferVals, na.color = 'transparent')
map %>% removeControl("xfer") %>%
addLegend("bottomright", pal = legendPal,
title = "Predicted Suitability<br>(Transferred)",
values = mapXferVals, layerId = 'xfer',
labFormat = reverseLabel(2, reverse_order = TRUE))
}
# map model prediction raster and transfer polygon
map %>% clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
addRasterImage(mapXfer(), colors = rasPal, opacity = 0.7,
layerId = 'xferRas', group = 'xfer', method = "ngb")
for (poly in shp) {
map %>% addPolygons(lng = poly[, 1], lat = poly[, 2], weight = 4,
color = "red", group = 'xfer', fill = FALSE)
}
}
xfer_time_module_rmd <- function(species) {
# Variables used in the module's Rmd code
list(
xfer_time_knit = !is.null(species$rmm$code$wallace$transfer_time),
curModel_rmd = species$rmm$code$wallace$transfer_curModel,
outputType_rmd = species$rmm$prediction$notes,
alg_rmd = species$rmm$model$algorithms,
clamp_rmd = species$rmm$model$algorithm$maxent$clamping,
##Determine the type of extent of transfer to use correct RMD function
xfer_time_user_knit = !is.null(species$rmm$code$wallace$userXfShpParams),
xfer_time_drawn_knit = !is.null(species$rmm$code$wallace$drawExtPolyXfCoords),
###arguments for creating extent
polyXfXY_rmd = if(!is.null(species$rmm$code$wallace$drawExtPolyXfCoords)){
printVecAsis(species$polyXfXY)} else {NULL},
polyXfID_rmd = if(!is.null(species$rmm$code$wallace$drawExtPolyXfCoords)){
species$polyXfID} else {0},
BgBuf_rmd = species$rmm$code$wallace$XfBuff,
polyXf_rmd = if(is.null(species$rmm$code$wallace$drawExtPolyXfCoords) & is.null(species$rmm$code$wallace$userXfShpParams)){
species$procEnvs$bgExt} else {NULL},
##Use of threshold for transferring
xfer_time_threshold_knit = !is.null(species$rmm$prediction$transfer$environment1$thresholdSet),
xfer_thresholdRule_rmd = species$rmm$prediction$transfer$environment1$thresholdRule,
xfer_threshold_rmd = if (!is.null(species$rmm$prediction$transfer$environment1$thresholdSet)){
species$rmm$prediction$transfer$environment1$thresholdSet} else {0},
xfer_probQuantile_rmd = species$rmm$code$wallace$transferQuantile,
###for guidance text
##name of environmental variables used
envs_name_rmd = species$rmm$data$transfer$environment1$sources,
yearMin_rmd = species$rmm$data$transfer$environment1$yearMin,
yearMax_rmd = species$rmm$data$transfer$environment1$yearMax,
###for getting the right environmental variables
xfer_time_worldclim_knit = !is.null(species$rmm$code$wallace$transfer_worldclim),
model_rmd = if (!is.null(species$rmm$code$wallace$transfer_worldclim)){
species$rmm$code$wallace$transfer_GCM} else {NULL},
rcp_rmd = if (!is.null(species$rmm$code$wallace$transfer_worldclim)){
species$rmm$code$wallace$transfer_RCP} else {0},
year_rmd = if (!is.null(species$rmm$code$wallace$transfer_worldclim)){
species$rmm$code$wallace$transfer_Time} else {0},
xfAOGCM_rmd = if(!is.null(species$rmm$code$wallace$transfer_ecoclimate)){
species$rmm$code$wallace$transfer_AOGCM} else {NULL},
xfScenario_rmd = if(!is.null(species$rmm$code$wallace$transfer_ecoclimate)){
species$rmd$transfer_Scenario} else {NULL}
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.