VanillaGanModel | R Documentation |
Original generative adverserial network from the paper:
https://arxiv.org/abs/1406.2661
and ported from the Keras (python) implementation:
https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py
$initialize
instantiates a new class and builds the
generator and discriminator.
$buildGenerator
build generator.
$buildGenerator
build discriminator.
Tustison NJ
## Not run:
library( keras )
library( ANTsRNet )
keras::backend()$clear_session()
# Let's use the mnist data set.
mnist <- dataset_mnist()
numberOfTrainingData <- length( mnist$train$y )
inputImageSize <- c( dim( mnist$train$x[1,,] ), 1 )
x <- array( data = mnist$train$x / 255, dim = c( numberOfTrainingData, inputImageSize ) )
y <- mnist$train$y
numberOfClusters <- length( unique( mnist$train$y ) )
# Instantiate the DCEC model
ganModel <- VanillaGanModel$new(
inputImageSize = inputImageSize,
latentDimension = 100 )
ganModel$train( x, numberOfEpochs = 100 )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.