View source: R/createResNetWithSpatialTransformerNetworkModel.R
createResNetWithSpatialTransformerNetworkModel2D | R Documentation |
Creates a keras model of the ResNet deep learning architecture for image classification with a spatial transformer network (STN) layer. The paper is available here:
createResNetWithSpatialTransformerNetworkModel2D(
inputImageSize,
numberOfOutputs = 1000,
layers = 1:4,
residualBlockSchedule = c(3, 4, 6, 3),
lowestResolution = 64,
cardinality = 1,
numberOfSpatialTransformerUnits = 50,
resampledSize = c(64, 64),
mode = c("classification", "regression")
)
inputImageSize |
Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori. |
numberOfOutputs |
Specifies number of units in final layer |
layers |
a vector determining the number of 'filters' defined at for each layer. |
residualBlockSchedule |
vector defining the how many residual blocks repeats. |
lowestResolution |
number of filters at the initial layer. |
cardinality |
perform ResNet (cardinality = 1) or ResNeXt (cardinality != 1 but powers of 2—try '32' ) |
numberOfSpatialTransformerUnits |
number of units in the dense layer. |
resampledSize |
output image size of the spatial transformer network. |
mode |
'classification' or 'regression'. |
https://arxiv.org/abs/1512.03385
an STN + ResNet keras model
Tustison NJ
## Not run:
library( ANTsRNet )
library( keras )
mnistData <- dataset_mnist()
numberOfLabels <- 10
# Extract a small subset for something that can run quickly
X_trainSmall <- mnistData$train$x[1:10,,]
X_trainSmall <- array( data = X_trainSmall, dim = c( dim( X_trainSmall ), 1 ) )
Y_trainSmall <- to_categorical( mnistData$train$y[1:10], numberOfLabels )
X_testSmall <- mnistData$test$x[1:10,,]
X_testSmall <- array( data = X_testSmall, dim = c( dim( X_testSmall ), 1 ) )
Y_testSmall <- to_categorical( mnistData$test$y[1:10], numberOfLabels )
# We add a dimension of 1 to specify the channel size
inputImageSize <- c( dim( X_trainSmall )[2:3], 1 )
model <- createResNetWithSpatialTransformerNetworkModel2D(
inputImageSize = inputImageSize,
numberOfOutputs = numberOfLabels )
model %>% compile( loss = 'categorical_crossentropy',
optimizer = optimizer_adam( lr = 0.0001 ),
metrics = c( 'categorical_crossentropy', 'accuracy' ) )
# Comment out the rest due to travis build constraints
# track <- model %>% fit( X_trainSmall, Y_trainSmall, verbose = 1,
# epochs = 1, batch_size = 2, shuffle = TRUE, validation_split = 0.5 )
# Now test the model
# testingMetrics <- model %>% evaluate( X_testSmall, Y_testSmall )
# predictedData <- model %>% predict( X_testSmall, verbose = 1 )
rm(model); gc()
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.