View source: R/createVggModel.R
createVggModel2D | R Documentation |
Creates a keras model of the Vgg deep learning architecture for image recognition based on the paper
createVggModel2D(
inputImageSize,
numberOfOutputs = 1000,
layers = c(1, 2, 3, 4, 4),
lowestResolution = 64,
convolutionKernelSize = c(3, 3),
poolSize = c(2, 2),
strides = c(2, 2),
numberOfDenseUnits = 4096,
dropoutRate = 0,
style = 19,
mode = c("classification", "regression")
)
inputImageSize |
Used for specifying the input tensor shape. The shape (or dimension) of that tensor is the image dimensions followed by the number of channels (e.g., red, green, and blue). The batch size (i.e., number of training images) is not specified a priori. |
numberOfOutputs |
Number of outputs in the final layer |
layers |
a vector determining the number of filters defined at for each layer. |
lowestResolution |
number of filters at the beginning. |
convolutionKernelSize |
2-d vector definining the kernel size during the encoding path |
poolSize |
2-d vector defining the region for each pooling layer. |
strides |
2-d vector describing the stride length in each direction. |
numberOfDenseUnits |
integer for the number of units in the last layers. |
dropoutRate |
float between 0 and 1 to use between dense layers. |
style |
|
mode |
'classification' or 'regression'. |
K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition
available here:
\url{https://arxiv.org/abs/1409.1556}
This particular implementation was influenced by the following python implementation:
\url{https://gist.github.com/baraldilorenzo/8d096f48a1be4a2d660d}
a VGG keras model
Tustison NJ
library( ANTsRNet )
library( keras )
library( ANTsR )
mnistData <- dataset_mnist()
numberOfLabels <- 10
# Extract a small subset for something that can run quickly.
# We also need to resample since the native mnist data size does
# not fit with GoogLeNet parameters.
resampledImageSize <- c( 100, 100 )
numberOfTrainingData <- 10
numberOfTestingData <- 5
X_trainSmall <- as.array(
resampleImage( as.antsImage( mnistData$train$x[1:numberOfTrainingData,,] ),
c( numberOfTrainingData, resampledImageSize ), TRUE ) )
X_trainSmall <- array( data = X_trainSmall, dim = c( dim( X_trainSmall ), 1 ) )
Y_trainSmall <- to_categorical( mnistData$train$y[1:numberOfTrainingData], numberOfLabels )
X_testSmall <- as.array(
resampleImage( as.antsImage( mnistData$test$x[1:numberOfTestingData,,] ),
c( numberOfTestingData, resampledImageSize ), TRUE ) )
X_testSmall <- array( data = X_testSmall, dim = c( dim( X_testSmall ), 1 ) )
Y_testSmall <- to_categorical( mnistData$test$y[1:numberOfTestingData], numberOfLabels )
# We add a dimension of 1 to specify the channel size
inputImageSize <- c( dim( X_trainSmall )[2:3], 1 )
model <- createVggModel2D( inputImageSize = c( resampledImageSize, 1 ),
numberOfOutputs = numberOfLabels )
model %>% compile( loss = 'categorical_crossentropy',
optimizer = optimizer_adam( lr = 0.0001 ),
metrics = c( 'categorical_crossentropy', 'accuracy' ) )
# Comment out the rest due to travis build constraints
# track <- model %>% fit( X_trainSmall, Y_trainSmall, verbose = 1,
# epochs = 1, batch_size = 2, shuffle = TRUE, validation_split = 0.5 )
# Now test the model
# testingMetrics <- model %>% evaluate( X_testSmall, Y_testSmall )
# predictedData <- model %>% predict( X_testSmall, verbose = 1 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.