deepFlash | R Documentation |
Perform hippocampal/entorhinal segmentation in T1 and T1/T2 images using labels from Mike Yassa's lab—https://faculty.sites.uci.edu/myassa/
deepFlash(
t1,
t2 = NULL,
whichParcellation = "yassa",
doPreprocessing = TRUE,
useRankIntensity = TRUE,
verbose = FALSE
)
t1 |
raw or preprocessed 3-D T1-weighted brain image. |
t2 |
optional raw or preprocessed 3-D T2-weighted brain image. |
whichParcellation |
string — "yassa". See above label descriptions. |
doPreprocessing |
perform preprocessing. See description above. |
useRankIntensity |
If false, use histogram matching with cropped template ROI. Otherwise, use a rank intensity transform on the cropped ROI. Only for 'yassa' parcellation. |
verbose |
print progress. |
https://www.nature.com/articles/s41598-024-59440-6
The labeling is as follows:
Label 0 :background
Label 5 :left aLEC
Label 6 :right aLEC
Label 7 :left pMEC
Label 8 :right pMEC
Label 9 :left perirhinal
Label 10:right perirhinal
Label 11:left parahippocampal
Label 12:right parahippocampal
Label 13:left DG/CA2/CA3/CA4
Label 14:right DG/CA2/CA3/CA4
Label 15:left CA1
Label 16:right CA1
Label 17:left subiculum
Label 18:right subiculum
Preprocessing on the training data consisted of:
n4 bias correction,
affine registration to deep flash template.
which is performed on the input images if doPreprocessing = TRUE
.
list consisting of the segmentation image and probability images for each label.
Tustison NJ
## Not run:
library( ANTsRNet )
library( keras )
image <- antsImageRead( "t1.nii.gz" )
results <- deepFlash( image )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.