longitudinalCorticalThickness: Longitudinal cortical thickness using deep learning

View source: R/corticalThickness.R

longitudinalCorticalThicknessR Documentation

Longitudinal cortical thickness using deep learning

Description

Perform KellyKapowski cortical thickness longitudinally using deepAtropos for segmentation of the derived single-subject template. It takes inspiration from the work described here:

Usage

longitudinalCorticalThickness(
  t1s,
  initialTemplate = "oasis",
  numberOfIterations = 1,
  refinementTransform = "antsRegistrationSyNQuick[a]",
  verbose = FALSE
)

Arguments

t1s

input list of 3-D unprocessed T1-weighted brain images from a single subject

initialTemplate

input image to define the orientation of the SST. Can be a string (see getANTsXNetData) or a specified template. This allows the user to create a SST outside of this routine.

numberOfIterations

Defines the number of iterations for refining the SST.

refinementTransform

Transform for defining the refinement registration transform. See options in antsRegistration.

verbose

print progress.

Details

https://pubmed.ncbi.nlm.nih.gov/31356207/

Value

List consisting of the SST, and a (sub-)list for each subject consisting of the preprocessed image, cortical thickness image, segmentation probability images, and affine mapping to the SST.

Author(s)

Tustison NJ, Avants BB

Examples

## Not run: 
library( ANTsRNet )
library( keras )

image <- antsImageRead( "t1w_image.nii.gz" )
kk <- corticalThickness( image )

## End(Not run)

ANTsX/ANTsRNet documentation built on Nov. 21, 2024, 4:07 a.m.