wmhSegmentation: White matter hyperintensity probabilistic segmentation

View source: R/whiteMatterHyperintensitySegmentation.R

wmhSegmentationR Documentation

White matter hyperintensity probabilistic segmentation

Description

Perform white matter hyperintensity probabilistic segmentation using deep learning

Usage

wmhSegmentation(
  flair,
  t1,
  whiteMatterMask = NULL,
  useCombinedModel = TRUE,
  predictionBatchSize = 16,
  patchStrideLength = 32,
  doPreprocessing = TRUE,
  verbose = FALSE
)

Arguments

flair

input 3-D FLAIR brain image.

t1

input 3-D T1-weighted brain image (assumed to be aligned to the flair).

whiteMatterMask

input white matter mask for patch extraction. If None, calculated using deepAtropos (labels 3 and 4).

useCombinedModel

Original or combined.

predictionBatchSize

Control memory usage for prediction. More consequential for GPU-usage.

patchStrideLength

3-D vector or int. Dictates the stride length for accumulating predicting patches.

doPreprocessing

perform n4 bias correction, intensity truncation, brain extraction.

verbose

print progress.

Value

probabilistic image.

Author(s)

Tustison NJ

Examples

## Not run: 
library( ANTsRNet )
library( keras )

t1 <- antsImageRead( "t1.nii.gz" )
flair <- antsImageRead( "flair.nii.gz" )
results <- wmhSegmentation( t1, flair )

## End(Not run)

ANTsX/ANTsRNet documentation built on Nov. 21, 2024, 4:07 a.m.