View source: R/whiteMatterHyperintensitySegmentation.R
wmhSegmentation | R Documentation |
Perform white matter hyperintensity probabilistic segmentation using deep learning
wmhSegmentation(
flair,
t1,
whiteMatterMask = NULL,
useCombinedModel = TRUE,
predictionBatchSize = 16,
patchStrideLength = 32,
doPreprocessing = TRUE,
verbose = FALSE
)
flair |
input 3-D FLAIR brain image. |
t1 |
input 3-D T1-weighted brain image (assumed to be aligned to the flair). |
whiteMatterMask |
input white matter mask for patch extraction. If None, calculated using deepAtropos (labels 3 and 4). |
useCombinedModel |
Original or combined. |
predictionBatchSize |
Control memory usage for prediction. More consequential for GPU-usage. |
patchStrideLength |
3-D vector or int. Dictates the stride length for accumulating predicting patches. |
doPreprocessing |
perform n4 bias correction, intensity truncation, brain extraction. |
verbose |
print progress. |
probabilistic image.
Tustison NJ
## Not run:
library( ANTsRNet )
library( keras )
t1 <- antsImageRead( "t1.nii.gz" )
flair <- antsImageRead( "flair.nii.gz" )
results <- wmhSegmentation( t1, flair )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.