#' A function to read and re-arrange the data in different ways
#'
#' This internal function imports the data and outputs only those variables that are needed to run the model
#' according to the information provided by the user.
#' @param data A data frame in which to find variables supplied in \code{model.eff} and \code{model.cost}. Among these,
#' effectiveness, cost and treatment indicator (only two arms) variables must always be provided and named 'e', 'c' and 't' respectively.
#' @param model.eff A formula expression in conventional \code{R} linear modelling syntax. The response must be a health economics
#' effectiveness outcome ('e') whose name must correspond to that used in \code{data}, and
#' any covariates are given on the right-hand side. If there are no covariates, specify \code{1} on the right hand side.
#' By default, covariates are placed on the "location" parameter of the distribution through a linear model.
#' Random effects can also be specified for each model parameter.
#' @param model.cost A formula expression in conventional \code{R} linear modelling syntax. The response must be a health economics
#' cost outcome ('c') whose name must correspond to that used in \code{data}, and any covariates are given on the right-hand side.
#' If there are no covariates, specify \code{1} on the right hand side. By default, covariates are placed on the "location"
#' parameter of the distribution through a linear model. Random effects can also be specified for each model parameter.
#' @param type Type of missingness mechanism assumed. Choices are Missing At Random (MAR) and Missing Not At Random (MNAR).
#' @param center Logical. If \code{center} is \code{TRUE} all the covariates in the model are centered.
#' @keywords read data
#' @importFrom stats na.omit sd as.formula model.matrix model.frame model.response terms
#' @export
#' @examples
#' #Internal function only
#' #no examples
#' #
#' #
data_read_pattern <- function(data, model.eff, model.cost, type, center) {
if(is.data.frame(data) == FALSE) {
stop("object data must be provided as data frame")
}
if(any(names(data) == "e") == TRUE & any(names(data) == "c") == TRUE) {
e <- as.name("e")
c <- as.name("c")
}
cov_matrix <- subset(data, select = -c(e, c))
cov_matrix <- cov_matrix[!unlist(vapply(cov_matrix, anyNA, logical(1)))]
is.formula<-function (x) { inherits(x, "formula") }
if(is.formula(model.eff) == FALSE | is.formula(model.cost) == FALSE) {
stop("model.eff and/or model.cost must be formula objects")
}
if(is.logical(center) == FALSE) { stop("center must be either TRUE or FALSE") }
fixed_e <- nobars_(model.eff)
fixed_c <- nobars_(model.cost)
random_e <- fb(model.eff)
random_c <- fb(model.cost)
fname_re_e_coeff <- as.formula(paste("e", "0", sep=" ~ "))
fname_re_c_coeff <- as.formula(paste("c", "0", sep=" ~ "))
clusn_e <- clusn_c <- NULL
if(!is.null(random_e) & length(random_e) > 1 | !is.null(random_c) & length(random_c) > 1) {
stop("random effects can be included in the formula only through a single expression within brackets")
}
if(all(names(model.frame(fixed_e, data = data)) %in% c("e", names(cov_matrix))) == FALSE |
all(names(model.frame(fixed_c, data = data)) %in% c("c", "e", names(cov_matrix))) == FALSE) {
stop("partially-observed covariates cannot be included in the fixed effects model")
}
if(all(names(model.frame(fixed_e, data = data)) %in% names(data)) == FALSE |
all(names(model.frame(fixed_c, data = data)) %in% names(data)) == FALSE) {
stop("you must provide names in the formula that correspond to those in the data")
}
if("e" %in% labels(terms(fixed_e)) | "c" %in% labels(terms(fixed_c))) {
stop("please remove 'e' from the right hand side of model.eff and/or 'c' from the right hand side of model.cost")
}
if(names(model.frame(fixed_e, data = data)[1]) != "e") {
stop("you must set 'e' as the response in the formula model.eff")
}
if("c" %in% names(model.frame(fixed_e, data = data))) {
stop("dependence allowed only through the cost model; please remove 'c' from model.eff")
}
if(names(model.frame(fixed_c, data = data)[1]) != "c") {
stop("you must set 'c' as the response in the formula model.cost")
}
if("e" %in% labels(terms(fixed_c))) {
if(length(grep(":e", labels(terms(fixed_c)))) != 0 | length(grep("e:", labels(terms(fixed_c)))) != 0) {
stop("no interaction effects for 'e' is allowed")
}
}
if("t" %in% names(model.frame(fixed_c, data = data)) | "t" %in% names(model.frame(fixed_e, data = data))) {
stop("treatment indicator must be provided only in the data. Please remove 't' from 'model.eff' and/or 'model.cost'")
}
index_mis_e <- which(is.na(data$e))
index_mis_c <- which(is.na(data$c))
data2 <- data
data$e[is.na(data$e) == TRUE] <- -999999
data$c[is.na(data$c) == TRUE] <- -999999
mf_e_fixed <- model.frame(formula = fixed_e, data = data)
mf_c_fixed <- model.frame(formula = fixed_c, data = data)
terms <- NULL
x_e_fixed <- model.matrix(attr(mf_e_fixed, "terms"), data = mf_e_fixed)
x_c_fixed <- model.matrix(attr(mf_c_fixed, "terms"), data = mf_c_fixed)
if("e" %in% names(mf_c_fixed)){
mf_c_fixed$e[index_mis_e] <- NA
}
name_re_e_coeff <- NULL
name_re_c_coeff <- NULL
if(!is.null(random_e)){
name_re_e_coeff <- sub("\\|.*", "", random_e)
if(grepl("0 + 1", name_re_e_coeff, fixed = TRUE) == TRUE) { stop("Either remove or add the random intercept")}
name_clus_e <- sub('.*\\|', '', random_e)
if(lengths(strsplit(name_clus_e, " ")) > 2) { stop("a single clustering variable must selected for each formula") }
name_clus_e <- gsub(" ", "", name_clus_e, fixed = TRUE)
if(!name_clus_e %in% names(cov_matrix)) { stop("the clustering variable must be among the variables in the dataset") }
if(strsplit(name_re_e_coeff, "")[[1]][1] == 0) {
no_random_int_e <- TRUE} else {no_random_int_e <- FALSE }
if(no_random_int_e == TRUE) {
name_re_e_coeff <- sub("[0]", "", name_re_e_coeff)
name_re_e_coeff <- sub("[+]", "", name_re_e_coeff)
}
if(name_re_e_coeff == "" | name_re_e_coeff == " ") { stop("please state for which variables the random effects are assumed") }
fname_re_e_coeff <- as.formula(paste("e", name_re_e_coeff, sep = " ~ "))
if(all(names(model.frame(fname_re_e_coeff, data = data)) %in% c("0", "1", names(model.frame(fixed_e, data = data)))) == FALSE) {
stop("only covariates defined as fixed effects can be included in the random effects model")
}
if("e" %in% labels(terms(fname_re_e_coeff))) {
stop("please remove 'e' from the random effects expression of model.eff")
}
if("c" %in% labels(terms(fname_re_e_coeff))) {
stop("dependence allowed only through the cost model; please remove 'c' from model.eff")
}
mf_e_random <- model.frame(formula = fname_re_e_coeff, data = data)
x_e_random <- model.matrix(attr(mf_e_random, "terms"), data = mf_e_random)
if(no_random_int_e == TRUE) {
x_e_random <- as.matrix(x_e_random[, !colnames(x_e_random) == "(Intercept)"])
if(is.null(colnames(x_e_random)) == TRUE & dim(x_e_random)[2] == 1) {
colnames(x_e_random) <- gsub(" ", "", name_re_e_coeff)
}
}
clus_e <- data[, name_clus_e]
if(!is.factor(clus_e)) { stop("clustering variables must be defined as factors") }
clusn_e <- as.numeric(clus_e)
if(!all(diff(sort(unique(clusn_e))) == 1) | !min(clusn_e) == 1) {
stop("ordered levels of clustering variables must not have gaps and must start from 1")
}
}
if(!is.null(random_c)){
name_re_c_coeff <- sub("\\|.*", "", random_c)
if(grepl("0 + 1", name_re_c_coeff, fixed = TRUE) == TRUE) { stop("Either remove or add the random intercept")}
name_clus_c <- sub('.*\\|', '', random_c)
if(lengths(strsplit(name_clus_c, " ")) > 2) { stop("a single clustering variable must selected for each formula") }
name_clus_c <- gsub(" ", "", name_clus_c, fixed = TRUE)
if(!name_clus_c %in% names(cov_matrix)) { stop("the clustering variable must be among the variables in the dataset") }
if(strsplit(name_re_c_coeff, "")[[1]][1] == 0) {
no_random_int_c <- TRUE} else {no_random_int_c <- FALSE }
if(no_random_int_c == TRUE) {
name_re_c_coeff <- sub("[0]", "", name_re_c_coeff)
name_re_c_coeff <- sub("[+]", "", name_re_c_coeff)
}
if(name_re_c_coeff == "" | name_re_c_coeff == " ") { stop("please state for which variables the random effects are assumed") }
if(gsub(" ", "", name_re_c_coeff) == "e" & no_random_int_c == FALSE) {name_re_c_coeff <- "1 + e" }
fname_re_c_coeff <- as.formula(paste("c", name_re_c_coeff, sep = " ~ "))
if(all(names(model.frame(fname_re_c_coeff, data = data)) %in% c("0", "1", names(model.frame(fixed_c, data = data)))) == FALSE) {
stop("only covariates defined as fixed effects can be included in the random effects model")
}
if("c" %in% labels(terms(fname_re_c_coeff))) {
stop("please remove 'c' from the random effects expression of model.cost")
}
if("e" %in% labels(terms(fname_re_c_coeff))) {
if(length(grep(":e", labels(terms(fname_re_c_coeff)))) != 0 | length(grep("e:", labels(terms(fname_re_c_coeff)))) != 0) {
stop("no interaction effects for 'e' is allowed")
}
}
mf_c_random <- model.frame(formula = fname_re_c_coeff, data = data)
x_c_random <- model.matrix(attr(mf_c_random, "terms"), data = mf_c_random)
if("e" %in% labels(terms(fname_re_c_coeff)) & length(labels(terms(fname_re_c_coeff))) == 1) {
x_c_random <- subset(x_c_random, select = -c(e))
}
if(no_random_int_c == TRUE) {
x_c_random <- as.matrix(x_c_random[, !colnames(x_c_random) == "(Intercept)"])
if(is.null(colnames(x_c_random)) == TRUE & dim(x_c_random)[2] == 1) {
colnames(x_c_random) <- gsub(" ", "", name_re_c_coeff)
}
}
clus_c <- data[, name_clus_c]
if(!is.factor(clus_c)) { stop("clustering variables must be defined as factors") }
clusn_c <- as.numeric(clus_c)
if(!all(diff(sort(unique(clusn_c))) == 1) | !min(clusn_c) == 1) {
stop("ordered levels of clustering variables must not have gaps and must start from 1")
}
}
y_e <- model.response(mf_e_fixed)
y_c <- model.response(mf_c_fixed)
y_e[index_mis_e] <- NA
y_c[index_mis_c] <- NA
data$e[index_mis_e] <- NA
data$c[index_mis_c] <- NA
N1 <- N2 <- c()
N1 <- sum(data$t == 1)
N2 <- length(data$t) - N1
N <- c(N1, N2)
m_eff <- rep(0, length(data$e))
m_eff[index_mis_e] <- 1
m_cost <- rep(0, length(data$c))
m_cost[index_mis_c] <- 1
m_eff1 <- m_eff2 <- m_cost1 <- m_cost2 <- c()
t1_index <- which(data$t == 1)
t2_index <- which(data$t == 2)
eff1 <- y_e[t1_index]
eff2 <- y_e[t2_index]
eff <- list(eff1, eff2)
cost1 <- y_c[t1_index]
cost2 <- y_c[t2_index]
cost <- list(cost1, cost2)
m_eff1 <- m_eff[t1_index]
m_eff2 <- m_eff[t2_index]
m_eff <- list(m_eff1, m_eff2)
m_cost1 <- m_cost[t1_index]
m_cost2 <- m_cost[t2_index]
m_cost <- list(m_cost1, m_cost2)
d1 <- d2 <- c()
d1[is.na(eff1) == FALSE & is.na(cost1) == FALSE] <- 1
d1[is.na(eff1) == TRUE & is.na(cost1) == FALSE] <- 2
d1[is.na(eff1) == FALSE & is.na(cost1) == TRUE] <- 3
d1[is.na(eff1) == TRUE & is.na(cost1) == TRUE] <- 4
d2[is.na(eff2) == FALSE & is.na(cost2) == FALSE] <- 1
d2[is.na(eff2) == TRUE & is.na(cost2) == FALSE] <- 2
d2[is.na(eff2) == FALSE & is.na(cost2) == TRUE] <- 3
d2[is.na(eff2) == TRUE & is.na(cost2) == TRUE] <- 4
n_patterns1 <- length(unique(d1))
n_patterns2 <- length(unique(d2))
d1_list <- list()
d1_list[[1]] <- any(d1 == 1)
d1_list[[2]] <- any(d1 == 2)
d1_list[[3]] <- any(d1 == 3)
d1_list[[4]] <- any(d1 == 4)
names(d1_list) <- c("d1_ec_obs", "d1_c_obs", "d1_e_obs", "d1_ec_mis")
d2_list<-list()
d2_list[[1]] <- any(d2 == 1)
d2_list[[2]] <- any(d2 == 2)
d2_list[[3]] <- any(d2 == 3)
d2_list[[4]] <- any(d2 == 4)
names(d2_list) <- c("d2_ec_obs", "d2_c_obs", "d2_e_obs", "d2_ec_mis")
d_list <- list()
d_list[[1]] <- c(n_patterns1, n_patterns2)
d_list[[2]] <- d1_list
d_list[[3]] <- d2_list
names(d_list) <- c("n_patterns", "d1", "d2")
N1_cc <- N2_cc <- N1_mis <- N2_mis <- c()
N1_cc[1] <- length(na.omit(eff1))
N1_cc[2] <- length(na.omit(cost1))
N2_cc[1] <- length(na.omit(eff2))
N2_cc[2] <- length(na.omit(cost2))
N_cc <- cbind(N1_cc, N2_cc)
N1_mis <- N1 - N1_cc
N2_mis <- N2 - N2_cc
N_mis <- cbind(N1_mis, N2_mis)
effects <- list(eff1, eff2)
costs <- list(cost1, cost2)
eff1_cc <- eff2_cc <- cost1_cc <- cost2_cc <- c()
eff1_cc <- na.omit(eff1)
eff2_cc <- na.omit(eff2)
eff_cc <- list(eff1_cc, eff2_cc)
cost1_cc <- na.omit(cost1)
cost2_cc <- na.omit(cost2)
cost_cc <- list(cost1_cc, cost2_cc)
cov1_e_fixed <- as.data.frame(x_e_fixed[t1_index, ])
names(cov1_e_fixed) <- colnames(x_e_fixed)
cov2_e_fixed <- as.data.frame(x_e_fixed[t2_index, ])
names(cov2_e_fixed) <- colnames(x_e_fixed)
cov_e_fixed <- list(cov1_e_fixed, cov2_e_fixed)
x_c_hold_fixed <- x_c_fixed
if("e" %in% colnames(x_c_hold_fixed)) {
x_c_fixed <- subset(x_c_hold_fixed, select = -c(e))
}
cov1_c_fixed <- as.data.frame(x_c_fixed[t1_index, ])
names(cov1_c_fixed) <- colnames(x_c_fixed)
cov2_c_fixed <- as.data.frame(x_c_fixed[t2_index, ])
names(cov2_c_fixed) <- colnames(x_c_fixed)
cov_c_fixed <- list(cov1_c_fixed, cov2_c_fixed)
cove_fixed <- list(cov1_e_fixed, cov2_e_fixed)
mean_cov_e_fixed <- list(apply(as.matrix(cov1_e_fixed), 2, mean), apply(as.matrix(cov2_e_fixed), 2, mean))
covc_fixed <- list(cov1_c_fixed, cov2_c_fixed)
mean_cov_c_fixed <- list(apply(as.matrix(cov1_c_fixed), 2, mean), apply(as.matrix(cov2_c_fixed), 2, mean))
cov1_e_center_fixed <- as.data.frame(scale(cov1_e_fixed, scale = FALSE))
cov2_e_center_fixed <- as.data.frame(scale(cov2_e_fixed, scale = FALSE))
cov1_e_center_fixed[, 1] <- rep(1, nrow(cov1_e_fixed))
cov2_e_center_fixed[, 1] <- rep(1, nrow(cov2_e_fixed))
cov_e_center_fixed <- list(cov1_e_center_fixed, cov2_e_center_fixed)
mean_cov_e_center_fixed <- list(apply(as.matrix(cov1_e_center_fixed), 2, mean), apply(as.matrix(cov2_e_center_fixed), 2, mean))
cov1_c_center_fixed <- as.data.frame(scale(cov1_c_fixed, scale = FALSE))
cov2_c_center_fixed <- as.data.frame(scale(cov2_c_fixed, scale = FALSE))
cov1_c_center_fixed[, 1] <- rep(1, nrow(cov1_c_fixed))
cov2_c_center_fixed[, 1] <- rep(1, nrow(cov2_c_fixed))
cov_c_center_fixed <- list(cov1_c_center_fixed, cov2_c_center_fixed)
mean_cov_c_center_fixed <- list(apply(as.matrix(cov1_c_center_fixed), 2, mean), apply(as.matrix(cov2_c_center_fixed), 2, mean))
if(center == TRUE) {
cov_e_fixed <- cov_e_center_fixed
cov_c_fixed <- cov_c_center_fixed
mean_cov_e_fixed <- mean_cov_e_center_fixed
mean_cov_c_fixed <- mean_cov_c_center_fixed
}
if(!is.null(random_e)){
cov1_e_random <- as.data.frame(x_e_random[t1_index, ])
names(cov1_e_random) <- colnames(x_e_random)
cov2_e_random <- as.data.frame(x_e_random[t2_index, ])
names(cov2_e_random) <- colnames(x_e_random)
cov_e_random <- list(cov1_e_random, cov2_e_random)
cove_random <- list(cov1_e_random, cov2_e_random)
mean_cov_e_random <- list(apply(as.matrix(cov1_e_random), 2, mean), apply(as.matrix(cov2_e_random), 2, mean))
cov1_e_center_random <- as.data.frame(scale(cov1_e_random, scale = FALSE))
cov2_e_center_random <- as.data.frame(scale(cov2_e_random, scale = FALSE))
if(no_random_int_e == FALSE) {
cov1_e_center_random[, 1] <- rep(1, nrow(cov1_e_random))
cov2_e_center_random[, 1] <- rep(1, nrow(cov2_e_random))
}
cov_e_center_random <- list(cov1_e_center_random, cov2_e_center_random)
mean_cov_e_center_random <- list(apply(as.matrix(cov1_e_center_random), 2, mean), apply(as.matrix(cov2_e_center_random), 2, mean))
if(center == TRUE) {
cov_e_random <- cov_e_center_random
mean_cov_e_random <- mean_cov_e_center_random
}
clusn_e1 <- clusn_e[t1_index]
clusn_e1 <- factor(clusn_e1, levels = unique(clusn_e1))
clusn_e2 <- clusn_e[t2_index]
clusn_e2 <- factor(clusn_e2, levels = unique(clusn_e2))
}
if(!is.null(random_c)){
x_c_hold_random <- x_c_random
if("e" %in% colnames(x_c_hold_random)) {
x_c_random <- subset(x_c_hold_random, select = -c(e))
}
cov1_c_random <- as.data.frame(x_c_random[t1_index, ])
names(cov1_c_random) <- colnames(x_c_random)
cov2_c_random <- as.data.frame(x_c_random[t2_index, ])
names(cov2_c_random) <- colnames(x_c_random)
cov_c_random <- list(cov1_c_random, cov2_c_random)
covc_random <- list(cov1_c_random, cov2_c_random)
mean_cov_c_random <- list(apply(as.matrix(cov1_c_random), 2, mean), apply(as.matrix(cov2_c_random), 2, mean))
cov1_c_center_random <- as.data.frame(scale(cov1_c_random, scale = FALSE))
cov2_c_center_random <- as.data.frame(scale(cov2_c_random, scale = FALSE))
if(no_random_int_c == FALSE) {
cov1_c_center_random[, 1] <- rep(1, nrow(cov1_c_random))
cov2_c_center_random[, 1] <- rep(1, nrow(cov2_c_random))
}
cov_c_center_random <- list(cov1_c_center_random, cov2_c_center_random)
mean_cov_c_center_random <- list(apply(as.matrix(cov1_c_center_random), 2, mean), apply(as.matrix(cov2_c_center_random), 2, mean))
if(center == TRUE) {
cov_c_random <- cov_c_center_random
mean_cov_c_random <- mean_cov_c_center_random
}
clusn_c1 <- clusn_c[t1_index]
clusn_c1 <- factor(clusn_c1, levels = unique(clusn_c1))
clusn_c2 <- clusn_c[t2_index]
clusn_c2 <- factor(clusn_c2, levels = unique(clusn_c2))
}
data2$e[is.na(data2$e) == TRUE] <- -999999
data2$c[is.na(data2$c) == TRUE] <- -999999
data2$me <- c(m_eff1, m_eff2)
data2$mc <- c(m_cost1, m_cost2)
d <- list(d1, d2)
names(cov_e_fixed) <- names(cov_c_fixed) <- names(mean_cov_e_fixed) <- names(mean_cov_c_fixed) <- c("Control", "Intervention")
if(!is.null(random_c)) {
names(cov_c_random) <- names(mean_cov_c_random) <- c("Control", "Intervention")
clusn_c <- list("Control" = clusn_c1, "Intervention" = clusn_c2)
} else {cov_c_random <- mean_cov_c_random <- NULL}
if(!is.null(random_e)) {
names(cov_e_random) <- names(mean_cov_e_random) <- c("Control", "Intervention")
clusn_e <- list("Control" = clusn_e1, "Intervention" = clusn_e2)
} else {cov_e_random <- mean_cov_e_random <- NULL}
names(m_eff) <- names(m_cost) <- c("Control", "Intervention")
names(d) <- c("Control", "Intervention")
names(effects) <- names(costs) <- names(eff_cc) <- names(cost_cc) <- c("Control", "Intervention")
data_raw <- list("raw_effects" = effects, "raw_costs" = costs, "raw_effects_cc" = eff_cc, "raw_costs_cc" = cost_cc, "arm_lengths" = N,
"arm_lengths_cc" = N_cc, "arm_missing_data" = N_mis, "missing_effects" = m_eff, "missing_costs" = m_cost,
"covariates_effects_fixed" = cov_e_fixed, "covariates_costs_fixed" = cov_c_fixed, "mean_cov_effects_fixed" = mean_cov_e_fixed, "mean_cov_costs_fixed" = mean_cov_c_fixed,
"covariates_effects_random" = cov_e_random, "covariates_costs_random" = cov_c_random, "mean_cov_effects_random" = mean_cov_e_random, "mean_cov_costs_random" = mean_cov_c_random,
"clus_e" = clusn_e, "clus_c" = clusn_c, "data_ind" = data2, "patterns_list" = d_list, "patterns" = d)
model_formula <- list("mf_model.e_fixed" = fixed_e, "mf_model.c_fixed" = fixed_c, "mf_model.e_random" = fname_re_e_coeff, "mf_model.c_random" = fname_re_c_coeff)
data_list <- list("data_raw" = data_raw, "model_formula" = model_formula)
return(data_list)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.