# Function for running PCC Binomial with probability unknown
PCC_Binomial <- function( data = NULL, n = NULL, historical_data = NULL,
historical_n = NULL, a0 = 1/2, b0 = 1/2, alpha_0 = NULL,
ARL_0 = 370.4, FAP = NULL, FIR = FALSE, fFIR = .99,
aFIR = 1/8, summary_list = TRUE, PCC_PLOT = TRUE, PriorPosterior_PLOT = FALSE,
historical_data_PLOT = FALSE, pdf_report = FALSE,
xlab = "Observations", ylab = "Quality characteristic Values",
main = "PCC Binomial with unknown probability" )
{
### Initial checks before procceeding to the main body of function
### Mainly this chunk of code will correspond to invalid general input before running stuff
# 'data' (i) not defined (ii) not in vector (iii) contain non-numeric value
if ( is.null(data) ) {
stop("'data' have not been defined")
} else { if ( any(!is.numeric((unlist(data)))) | any(unlist(data)<0) | any(unlist(data)%%1!=0) ) stop("Invalid 'data' input")
if ( !is.vector(data) ) stop("'data' must be in vector form")
}
# 'historical_data' (i) not in vector (ii) contain non-numeric value
if ( !is.null(historical_data) ) {
if ( any(!is.numeric((unlist(historical_data)))) | any(unlist(historical_data)<0) | any(unlist(historical_data)%%1!=0) ) stop("Invalid 'historical_data' input")
if ( !is.vector(data) ) stop("'historical data' must be in vector form")
}
# 'ARL_0' (i) non-numeric (ii) negative
if( !missing(ARL_0) ) {
if ( length(unlist(ARL_0))>1 ) { message("More than one value for 'ARL_0', the first one will only be used")
if ( !is.numeric(ARL_0[1]) | ARL_0<=0 ) { stop("Invalid 'ARL_0' value") } else { ARL_0 <- ARL_0[1] }
} else { if ( !is.numeric(ARL_0) | ARL_0<=0 ) { stop("Invalid 'ARL_0' value") } }
}
# 'FAP' (i) non-numeric (ii) negative
if (!missing(FAP)){
if ( length(unlist(FAP))>1 ) { message("More than one value for 'FAP', the first one will only be used")
if ( !is.numeric(FAP[1]) | FAP<=0 | FAP>=1 ) { stop("Invalid 'FAP' value") } else { FAP <- FAP[1] }
} else { if ( !is.numeric(FAP) | FAP<=0 | FAP>=1 ) { stop("Invalid 'FAP' value") } }
}
# 'FIR' (i) logical (ii) fFIR - aFIR conditions
if ( length(unlist(FIR))>1 ) {
message("More than one value for 'FIR', the first one will only be used")
if ( !is.logical(FIR[1]) ) { stop("Invalid 'FIR' value ; 'FIR' must be logical") } else { FIR <- FIR[1] }
} else {
if ( !is.logical(FIR) ) { stop("Invalid 'FIR' value ; 'FIR' must be logical") }
}
# fFIR - aFIR conditions if FIR
if ( FIR ) {
if ( !missing(fFIR) ) {
if ( length(unlist(fFIR))>1 ) {
message("More than one value for 'fFIR', the first one will only be used")
if ( !is.numeric(fFIR[1]) | fFIR[1]<=0 | fFIR[1]>=1 ) {
stop("Invalid 'fFIR' value")
} else { fFIR <- fFIR[1] }
} else {
if ( !is.numeric(fFIR) | fFIR<=0 | fFIR>=1 ) {
stop("Invalid 'fFIR' value")
}
}
}
if ( !missing(aFIR) ) {
if ( length(unlist(aFIR))>1 ) {
message("More than one value for 'aFIR', the first one will only be used")
if ( !is.numeric(aFIR[1]) | aFIR[1]<=0 ) {
stop("Invalid 'aFIR' value")
} else { aFIR <- aFIR[1] }
} else {
if ( !is.numeric(aFIR) | aFIR<=0 ) {
stop("Invalid 'aFIR' value")
}
}
}
}
### Setting the False Alarm Probability & False Alarm Rate based on the Sidak correction
# data length
N <- length(data)
# If both ARL_0 and FAP chosen
if ( !is.null(ARL_0) & !is.null(FAP) ) {
message("Both ARL_0 and FAP are defined as input, so ARL_0 is used by default. \nIn order to use FAP instead, set ARL_0 = NULL")
FAR <- 1/ARL_0
# If only FAP is chosen
} else if ( is.null(ARL_0) & !is.null(FAP) ) {
FAR <- 1-(1-FAP)^(1/(N-1))
# If only ARL0 is chosen
} else if ( !is.null(ARL_0) & is.null(FAP) ){
FAR <- 1/ARL_0
}
# If FIR PCC is chosen - default value for f=0.99
if ( FIR ) {
tf <- 1:N
Afir <- c(( 1- (1-fFIR)^(1+aFIR*(tf-1)) ) )
FAR <- 1-(1-FAR)*Afir
}
###############################################################
###############################################################
## START (1) Only this bit changes from function to function ##
## In some cases 'data' and 'historical_data' restrictions ##
## change as well at the beginning of the function ##
###############################################################
###############################################################
# Prior parameter input (i) more than one value for parameters (ii) non-numeric input
if ( is.null(n) ) { stop("'number of trials - n' have not been defined")
} else {
if ( !is.vector(n) ) { stop("'number of trials - n' must be in vector form")
} else {
if ( length(n)!=length(data) ) { stop("Vector of 'number of trials - n' must have the same length as 'data'")
} else {
if ( any(!is.numeric((unlist(n)))) ) { stop("Invalid 'number of trials - n' input")
} else { if( any((unlist(n)<=0)) ) stop("Invalid 'number of trials - n' input, n must be positive")
if( any((unlist(data)>unlist(n))) ) stop("Invalid 'number of trials - n' input, some 'data' larger than 'n'") }
}
}
}
if( !missing(a0) ) {
if ( length(unlist(a0))>1 ) { message("More than one value for 'a0', the first one will only be used")
if ( !is.numeric(a0) | a0<=0 ) { stop("Invalid 'a0' value") } else { a0 <- a0[1] }
} else { if ( !is.numeric(a0) | a0<=0 ) { stop("Invalid 'a0' value") } }
}
if( !missing(b0) ) {
if ( length(unlist(b0))>1 ) { message("More than one value for 'b0', the first one will only be used")
if ( !is.numeric(b0) | b0<=0 ) { stop("Invalid 'b0' value") } else { b0 <- b0[1] }
} else { if ( !is.numeric(b0) | b0<=0 ) { stop("Invalid 'b0' value") } }
}
### Main body of function - PCC illustration - USING FAR (or FAP equivelantly)
## Histotic data and processing
if ( !is.null(historical_data) ){
if ( is.null(historical_n) ) { historical_n <- rep(1, times=length(historical_data))
} else {
if ( !is.vector(historical_n) ) { stop("'historical_n - number of trials' must be in vector form")
} else {
if ( length(historical_n)!=length(historical_data) ) { stop("Vector of 'historical_n - number of trials' must have the same length as 'historical_data'")
} else {
if ( any(!is.numeric((unlist(historical_n)))) ) { stop("Invalid 'historical_n - number of trials' input")
} else { if( any((unlist(historical_n)<=0)) ) stop("Invalid 'historical_n - number of trials' input, historical_n must be positive")
if( any((unlist(historical_data)>unlist(historical_n))) ) stop("Invalid 'historical_n - number of trials' input, some 'historical_data' larger than 'historical_n'") }
}
}
}
N_historicaldata <- length(historical_data)
# Check about alpha_0
# If no chosen value for alpha_0 use default setting
if (is.null(alpha_0)) { alpha_0 <-1/N_historicaldata
} else {
if ( length(unlist(alpha_0))>1 ) {
message("More than one value for 'alpha_0', the first one will only be used")
if ( !is.numeric(alpha_0) | alpha_0<0 | alpha_0>1) { stop("Invalid 'alpha_0' value")
} else { alpha_0 <- alpha_0[1] }
} else { if ( !is.numeric(alpha_0) | alpha_0<0 | alpha_0>1 ) { stop("Invalid 'alpha_0' value") } }
}
# Process historical data
# Power Prior parameters
a0_PowerP <- a0 + alpha_0*sum(historical_data)
b0_PowerP <- b0 + alpha_0*( sum(historical_n) - sum(historical_data) )
# Keep similar notation as input
a0 <- a0_PowerP ; b0 <- b0_PowerP
}
### PCC implementation
# Sum of observations
dataSum <- cumsum(data)[seq(1, length(data))]
# Sum of rates
sumN <- cumsum(n)[ seq(1, length(data)) ]
# Posterior parameters
a0_Post <- a0 + dataSum
b0_Post <- b0 + sumN - dataSum
bb <- function(x, n, a, b) {
exp( lfactorial(n) - lfactorial(x) - lfactorial(n-x) + lbeta(a+x, b+n-x) - lbeta(a, b) )
}
# HPRD - Binomial likelihood ; probability unknown
HPRD_likBinPU <- function(far, N, Ap, Bp){
mean_pr <- N*Ap / (Ap+Bp)
var_pr <- N*Ap*Bp*(Ap+Bp+N) / ( (Ap+Bp)^2*(Ap+Bp+1) )
lb <- max( floor(mean_pr - sqrt((1/far)*var_pr)), 0 )
ub <- min( ceiling(mean_pr + sqrt((1/far)* var_pr)), N )
# locations of the ordered probabilities
Pi <- order( bb(lb:ub, n = N, a = Ap, b = Bp), decreasing=T ) + lb - 1
nnn <- 1
sumprob <- 0
diff <- 1
E <- c()
stopp <- 0
while (stopp==0) {
sumprob <- sumprob + bb( Pi[nnn], n = N, a = Ap, b = Bp )
if ( abs(sumprob - (1-far)) < diff ) {
E <- c( E, Pi[nnn] )
diff <- abs( sumprob - (1-far) )
nnn <- nnn + 1
} else { stopp = 1 }
}
c( min(E), max(E) )
}
# Control limits
if (!FIR) { CL <- t( mapply( function(NN, A0, B0, FD=FAR) { HPRD_likBinPU(far=FD, N=NN, Ap=A0, Bp=B0) }
, NN = n, A0 = a0_Post, B0 = b0_Post) )
} else { CL <- t( mapply( function(NN, A0, B0, FD) { HHPRD_likBinPU(far=FD, N=NN, Ap=A0, Bp=B0) }
, NN = n, A0 = a0_Post, B0 = b0_Post, FD=FAR) )
}
CL <- rbind( c(NA, NA), CL )
CL <- CL[-nrow(CL), ]
## Prior Posterior plot
if ( PriorPosterior_PLOT ) {
PrPostPLOT <-
ggplot2::ggplot(data.frame(x = c(0, 1)), ggplot2::aes(x = x)) +
ggplot2::stat_function(fun = dbeta, args = list(shape1 = a0_Post[N], shape2 = b0_Post[N]), aes(colour = "Posterior", linetype = "Posterior"), size = 1) +
{if(a0 == 1/2 & b0 == 1/2) { ggplot2::stat_function(fun = function(x) { ( 1/( sqrt(x * (1-x)) ) ) / (dbeta( .95 * (a0_Post[N]/(a0_Post[N] + b0_Post[N])), shape1 = a0_Post[N], shape2 = b0_Post[N] )) }, ggplot2::aes(colour = "Prior", linetype = "Prior"), size = 1)
} else { ggplot2::stat_function(fun = dbeta, args = list(shape1 = a0, shape2 = b0), aes(colour = "Prior", linetype = "Prior"), size = 1) } } +
ggplot2::scale_x_continuous(name = "") +
ggplot2::scale_y_continuous(name = "Density") +
ggplot2::scale_linetype_manual(values = c("solid", "dashed"), guide = FALSE) +
ggplot2::scale_colour_manual(values = c("#3CB371", "#FF4500"),
labels = c( bquote("Prior: Beta(" ~ theta ~ "|" ~ .(round(a0, digits = 1)) ~ ", " ~ .(round(b0, digits = 1)) ~ ")" ),
bquote("Posterior: Beta(" ~ theta ~ "|" ~ .(round(a0_Post[N], digits = 1)) ~ ", " ~ .(round(b0_Post[N], digits = 1)) ~ ")" )),
guide = guide_legend(override.aes = list( color = c("#FF4500", "#3CB371"),
linetype = c("dashed", "solid"),
size = c(.5, .5)), title = NULL)) +
ggplot2::ggtitle(expression(atop("PCC Binomial likelihood - unknown probability"~theta, "Prior/Posterior distribution"))) +
{if(a0 == 1/2 & b0 == 1/2) {
ggplot2::geom_point( ggplot2::aes(x = a0_Post[N]/(a0_Post[N] + b0_Post[N]), y = 0), color = "#3CB371", show.legend = FALSE, shape = 4, size = 3, stroke = 1.5, na.rm = TRUE )
} else { geom_point(aes(x = c(a0/(a0 + b0), a0_Post[N]/(a0_Post[N] + b0_Post[N])), y = c(0, 0)), color = c("#FF4500", "#3CB371"), show.legend = FALSE, shape = 4, size = 3, stroke = 1.5, na.rm = TRUE) } } +
{if(a0 == 1/2 & b0 == 1/2) {
ggplot2::annotate("text", x = a0_Post[N]/(a0_Post[N] + b0_Post[N]), y = 0, label = paste(expression(mu[post])), color = "#3CB371", size = 6, parse = TRUE, vjust = 1.25)
} else { ggplot2::annotate("text", x = c(a0/(a0 + b0), a0_Post[N]/(a0_Post[N] + b0_Post[N])), y = c(0, 0), label = paste(expression(mu[prior], mu[post])),
color = c("#FF4500", "#3CB371"), size = 6, parse = TRUE, vjust = 1.25) } } +
ggplot2::theme(legend.position = "bottom",
axis.line = element_line(size=1, colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
plot.title = element_text(size = 18, hjust = 0.5),
text = element_text(size = 15),
axis.text.x = element_text(colour="black", size = 12),
axis.text.y = element_text(colour="black", size = 12))
print(PrPostPLOT)
}
####################################################################
####################################################################
## END (1) Only the above bit changes from function to function ##
####################################################################
####################################################################
## Output
{ # Construction of 'In' and 'Out' of control column for return results
States <- rep("", times=N)
States[ifelse(data < CL[, 1], TRUE, FALSE)] <- "Alarm (LL)" ; States[ifelse(data > CL[, 2], TRUE, FALSE)] <- "Alarm (UL)"
# Return results
PCC_summary <- data.frame( data=data, HPrD_LL=CL[, 1], HPrD_UL=CL[, 2], Alarms=States ) }
## Dynamic recalculation of PCC plot's y axis
# PCC y axis limits allowance
Ratio <- (PCC_summary$HPrD_UL-PCC_summary$HPrD_LL)/min(PCC_summary$HPrD_UL-PCC_summary$HPrD_LL, na.rm = T)
# Y axis limits
AdjustedYlim <- c(min(PCC_summary$data, PCC_summary$HPrD_LL[which(Ratio<=2.5)], na.rm=T),
max(PCC_summary$data, PCC_summary$HPrD_UL[which(Ratio<=2.5)], na.rm=T))
### Output of function
## PCC plot
if ( PCC_PLOT ) {
# Creation of PCC plot
PCC_PlotSummary <- cbind(Indices=1:N, PCC_summary)
PCC <- ggplot2::ggplot(PCC_PlotSummary, ggplot2::aes(Indices, data)) +
ggplot2::geom_line(ggplot2::aes(x=Indices, y=data), na.rm = TRUE) +
ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_UL), color="red", linetype="solid", size=1, na.rm = TRUE) +
ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_LL), color="red", linetype="solid", size=1, na.rm = TRUE) +
ggplot2::geom_ribbon(ggplot2::aes(x=Indices, ymin=HPrD_UL, ymax=HPrD_LL, fill=TRUE), alpha=0.25, show.legend=FALSE) +
ggplot2::scale_fill_manual(values=c("TRUE"="green")) +
ggplot2::geom_point(ggplot2::aes(group=Indices, color=as.factor(Alarms), stroke = 1.5), show.legend=FALSE, na.rm = TRUE) +
ggplot2::scale_color_manual(values=c("black", "red", "red"), na.value = "black") +
ggplot2::coord_cartesian(ylim = AdjustedYlim) +
ggplot2::labs(title = main, x = xlab, y = ylab) +
ggplot2::theme(legend.position = "top",
legend.title = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black", size = 0.5, linetype = "solid"),
panel.background = ggplot2::element_blank(),
plot.title = ggplot2::element_text(hjust = 0.5)
)
# Creation of PCC plot if historical data are chosen to be on the plot
if ( !is.null(historical_data) & historical_data_PLOT ) {
PCC_summary_historicaldata <- data.frame( data=c(historical_data, data), HPrD_LL=c(rep(NA, times=N_historicaldata), CL[, 1]),
HPrD_UL=c(rep(NA, times=N_historicaldata), CL[, 2]), Alarms=c(rep("", times=N_historicaldata), States) )
PCC_PlotSummary <- cbind(Indices=c(-N_historicaldata:(-1), 1:N), TypeOfdata=c(rep("Historical", times=N_historicaldata), rep("Current", times=N)), PCC_summary_historicaldata )
PCC_historical <- ggplot2::ggplot(PCC_PlotSummary, ggplot2::aes(Indices, data)) +
ggplot2::geom_line(ggplot2::aes(x=Indices, y=data, linetype = as.factor(TypeOfdata)), na.rm = TRUE) +
ggplot2::geom_segment(ggplot2::aes(x = 0, y = min(HPrD_LL, na.rm=TRUE), xend = 0, yend = max(HPrD_UL, na.rm=TRUE))) +
ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_UL), color="red", linetype="solid", size=1, na.rm = TRUE) +
ggplot2::geom_line(ggplot2::aes(x=Indices, y=HPrD_LL), color="red", linetype="solid", size=1, na.rm = TRUE) +
ggplot2::geom_ribbon(ggplot2::aes(x=Indices, ymin=HPrD_UL, ymax=HPrD_LL, fill=TRUE), alpha=0.25, show.legend=FALSE) +
ggplot2::scale_fill_manual(values=c("TRUE"="green")) +
ggplot2::geom_point(ggplot2::aes(group=Indices, shape=as.factor(TypeOfdata), color=as.factor(Alarms), stroke = 1.5), show.legend=FALSE, na.rm = TRUE) +
ggplot2::scale_color_manual(values=c("black", "red", "red"), na.value = "black") +
ggplot2::scale_linetype_manual(values=c("Historical"="dotted", "Current"="solid")) +
ggplot2::scale_shape_manual(values=c("Historical"=1, "Current"=19)) +
ggplot2::coord_cartesian(ylim = AdjustedYlim) +
ggplot2::labs(title = main, x = xlab, y = ylab) +
ggplot2::theme(legend.position = "top",
legend.title = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black", size = 0.5, linetype = "solid"),
panel.background = ggplot2::element_blank(),
plot.title = ggplot2::element_text(hjust = 0.5)
)
print(PCC_historical)
} else { print(PCC) }
}
# List of results
if ( summary_list ) { print(PCC_summary) }
# List of results return in pdf
if ( pdf_report ) {
# save pdf
grDevices::pdf(
paste0( "PCC_results_", paste0( unlist(strsplit(date(), " "))[c(1,2,3,5)], collapse = "_" ), "_",
paste0( unlist(strsplit( unlist(strsplit(date(), " "))[4], ":" )), collapse = "." ),
".pdf" ),
height = 8.264, width = 11.694)
# PCC plot on pdf
print(PCC)
# Prior Posterior plot on pdf
print(PrPostPLOT)
# Results matrix on pdf
# Chunk of code to split results matrix to different pages - Set a default number based on pdf height/width
NRowsPerPage <- 25
if(NRowsPerPage > nrow(PCC_summary)){ FloatingRow <- nrow(PCC_summary) } else { FloatingRow <- NRowsPerPage }
sapply(1:ceiling(nrow(PCC_summary)/NRowsPerPage), function(index) {
if (index==1) { StartingRow <<- 1 }
grid::grid.newpage()
gridExtra::grid.table(PCC_summary[StartingRow:FloatingRow, ])
StartingRow <<- FloatingRow + 1
if( sum(NRowsPerPage, FloatingRow) < nrow(PCC_summary)){ FloatingRow <<- NRowsPerPage + FloatingRow } else { FloatingRow <<- nrow(PCC_summary) }
})
grDevices::dev.off()
}
}
#set.seed(1)
#SimData <- rbinom(n = 30, size = 20, prob = 0.6)
#SimData[15] <- round( SimData[15] + 3*sqrt(20*0.1*0.9) )
#PCC_Binomial(SimData, n = rep(20, 30), PCC_PLOT = FALSE, PriorPosterior_PLOT = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.