#THIS SCRIPT IS WAY TO GO BEYOND AIC AND MEASURE ACTUAL ERROR BETWEEN MODEL SELECTION OPTIONS AND
#TRUE MODEL OUTPUT
#original project directory so we can switch back to it
orig.dir <- getwd()
setwd(orig.dir)
##################################################################################################
#THINGS WE NEED
##################################################################################################
scenario1 <- "IncPop_ConTemp" #the folder name
#spp1 spp2 spp3
#short_names <- c("YT","Cod","Had") #fixed above
short_names <- c("Had")
exclude_strata <- TRUE
#for getting into correct subfolder
ifelse(exclude_strata==TRUE,
{str_dir <- "ExcludeStrata"},
{str_dir <- "AllStrata"})
###################################################################################################
n_spp <- 3
years_sim <- 22
years_cut <- 2
#survey results without noise
list_all_temp <- readRDS(paste("E:\\READ-PDB-blevy2-MFS2\\GB_Simulation_Results\\",scenario1,"\\list_all_",scenario1,".RDS",sep=""))
#simulation results
#memory.limit(45000)
#result <- readRDS(paste("E:\\READ-PDB-blevy2-MFS2\\GB_Results\\",scenario1,"\\result_",scenario1,".RDS",sep=""))
#load existing result_goodones, if it exists
result <- readRDS(paste("E:\\READ-PDB-blevy2-MFS2\\GB_Simulation_Results\\",scenario1,"\\result_goodones_",scenario1,".RDS",sep=""))
#1- single set of random survey locations used in stratified mean analysis
surv_random <- readRDS(paste("E:\\READ-PDB-blevy2-MFS2\\GB_Simulation_Results\\",scenario1,"\\surv_random_",scenario1,".RDS",sep=""))
#pick specific simulation
#For YT:
#for Conpop_ConTemp (also used for IncTemp) run 1 shows decent constant value with single spike early on
#for Incpop_ConTemp (also used for IncTemp) run 77 shows strong increase for yellowtail
#for DecPop_ConTemp run 25 shows clear decrease with small values towards the end
#for DecPop_IncTemp run 13 shows clear decrease with small values towards the end
#For Cod:
#for ConPop_ConTemp iteration 13 is pretty good
#for ConPop_IncTemp iteration 1 is pretty good
#for IncPop_ConTemp iteration 63 shows clear increase with some variation towards end
#for IncPop_IncTemp iteration 44 shows clear increase with some variation towards end
#for DecPop_ConTemp iteration 18 shows steady decline
#for DecPop_IncTemp iteration 44 shows steady decline
#For Haddock:
#for ConPop_ConTemp iteration 6 shows steady population with some small varability througout
#for ConPop_IncTemp iteration 3 shows steady population
#IncPop_ConTemp doesnt have great options but 98 pretty good
#IncPop_IncTemp 100 is pretty good
#DecPop_ConTemp 6 is pretty good
#DecPop_IncTemp 9 is pretty good
#cov_used <- "_WithCov" #dont need this anymore
#old way
#ifelse(covariates==TRUE,{cov_dir <- paste("_with_",cov_used,sep="")},{cov_dir <- ""})
scenario <- paste("ForPaper/",scenario1,sep="")
#choose which simulation iteration to use based on above
if(scenario1=="ConPop_ConTemp"){good_iter <- c(1,13,6)}
if(scenario1=="ConPop_IncTemp"){good_iter <- c(1,1,3)}
if(scenario1=="IncPop_ConTemp"){good_iter <- c(77,63,98)}
if(scenario1=="IncPop_IncTemp"){good_iter <- c(77,44,100)}
if(scenario1=="DecPop_ConTemp"){good_iter <- c(25,18,6)}
if(scenario1=="DecPop_IncTemp"){good_iter <- c(13,44,9)}
list_all <- list()
list_all[["YT"]] <- list_all_temp[[good_iter[1]]]
list_all[["Cod"]] <- list_all_temp[[good_iter[2]]]
list_all[["Had"]] <- list_all_temp[[good_iter[3]]]
#############################################################################################
# #save the list_all with the correct surveys from good_iter
# result_goodones <- list()
# result_goodones[[good_iter[[1]]]] <- result[[good_iter[[1]]]]
# result_goodones[[good_iter[[2]]]] <- result[[good_iter[[2]]]]
# result_goodones[[good_iter[[3]]]] <- result[[good_iter[[3]]]]
# saveRDS(result_goodones,file = paste("E:\\READ-PDB-blevy2-MFS2\\GB_Results\\",scenario1,"\\result_goodones_",scenario1,".RDS",sep=""))
#############################################################################################
#############################################################################################
#strata that each species occupies. Used to calculate stratified random mean of each
strata_species <- list()
strata_species[["YT"]] <- c(13,14,15,16,17,18,19,20,21)
strata_species[["Cod"]] <- c(13,14,15,16,17,18,19,20,21,22,23,24,25)
strata_species[["Had"]] <- c(13,14,15,16,17,18,19,20,21,22,23,24,25,29,30)
##################################################################################################
setwd(orig.dir)
#ADD TRUE MODEL POPULATION VALUES TO SURVEY DATA TABLES
#ALSO ADD LAT LON LOCATIONS TO TABLE AS WELL
library(raster)
library(sp)
library(TMB)
library(VAST)
library(dplyr)
library(ggplot2)
library(rgdal)
#read in habitat matrix
hab <- readRDS(file="hab_GB_3species.RDS") #courser resolution
#read in GB strata
#haddock contains all stratas used
Had_ras <- readRDS(file="TestScripts/Habitat_plots/Haddock/Had_Weighted_AdaptFalse_RASTER_res2.RDS")
#plot(Had_ras)
#translate habitat matrix back into raster
hab_ras <-raster(hab$hab$spp3)
extent(hab_ras) <- extent(Had_ras)
crs(hab_ras) <- crs(Had_ras)
#plot(hab_ras)
#read in species-specific polygons
#load stratas for clipping etc
strata.dir <- "C:\\Users\\benjamin.levy\\Desktop\\NOAA\\GIS_Stuff\\" # strata shape files in this directory
# get the shapefiles
strata.areas <- readOGR(paste(strata.dir,"Survey_strata", sep="")) #readShapePoly is deprecated; use rgdal::readOGR or sf::st_read
#define georges bank for YELLOWTAIL
GB_strata_num <- c("01130","01140","01150","01160","01170","01180","01190","01200","01210")
#pull out indices corresponding to GB strata
GB_strata_idx <- match(GB_strata_num,strata.areas@data[["STRATUMA"]])
GB_strata_YT <- strata.areas[GB_strata_idx,]
#define georges bank for COD
GB_strata_num <- c("01130","01140","01150","01160","01170","01180","01190","01200","01210","01220","01230","01240","01250")
#pull out indices corresponding to GB strata
GB_strata_idx <- match(GB_strata_num,strata.areas@data[["STRATUMA"]])
GB_strata_Cod <- strata.areas[GB_strata_idx,]
#define georges bank for HADDOCK
GB_strata_num <- c("01130","01140","01150","01160","01170","01180","01190","01200","01210","01220","01230","01240","01250", "01290", "01300")
#pull out indices corresponding to GB strata
GB_strata_idx <- match(GB_strata_num,strata.areas@data[["STRATUMA"]])
GB_strata_Had <- strata.areas[GB_strata_idx,]
GB_strata <- list(GB_strata_YT,GB_strata_Cod,GB_strata_Had)
names(GB_strata) <- c("YT","Cod","Had")
r1 <- raster(extent(hab_ras), nrow = nrow(hab_ras), ncol =ncol(hab_ras) , crs = crs(GB_strata_YT))
r2 <- raster(extent(hab_ras), nrow = nrow(hab_ras), ncol =ncol(hab_ras) , crs = crs(GB_strata_Cod))
r3 <- raster(extent(hab_ras), nrow = nrow(hab_ras), ncol =ncol(hab_ras) , crs = crs(GB_strata_Had))
rr <- list(r1,r2,r3)
names(rr)<-short_names
for(iter in seq(length(list_all))){
print(iter)
temp <- matrix(data=0,nrow=length(list_all[[iter]][,1]),ncol=n_spp)
lat <- vector()
lon <- vector()
for(samp in seq(length(list_all[[iter]][,1]))){
#ADDING TRUE POPULATION
x = as.numeric(list_all[[iter]][samp,2]) #x in second column
y = as.numeric(list_all[[iter]][samp,3]) #y in third column
wk = as.numeric(list_all[[iter]][samp,11]) #week in 11th column
yr = as.numeric(list_all[[iter]][samp,7]) #year in 7th column
temp[samp,1] <- sum(result[[good_iter[iter]]]$pop_bios[[(wk+(52*(yr-1)))]][["spp1"]],na.rm=T) #YT is spp1
temp[samp,2] <- sum(result[[good_iter[iter]]]$pop_bios[[(wk+(52*(yr-1)))]][["spp2"]],na.rm=T) #Cod is spp2
temp[samp,3] <- sum(result[[good_iter[iter]]]$pop_bios[[(wk+(52*(yr-1)))]][["spp3"]],na.rm=T) #Had is spp3
#ADDING LAT LON LOCATIONS
rw <- as.numeric(list_all[[iter]][samp,"x"]) #x in col 2
cl <- as.numeric(list_all[[iter]][samp,"y"]) #y in col 3
lon[samp] <- xFromCol(hab_ras, col = cl)
lat[samp] <- yFromRow(hab_ras, row = rw)
}
temp <- cbind(temp,lat,lon)
colnames(temp) <- c("YT","Cod","Had","Latitude","Longitude")
list_all[[iter]] <- cbind(list_all[[iter]],temp)
colnames(list_all[[iter]]) <- c("station_no","x","y","stratum","day","tow","year","YT_samp","Cod_samp","Had_samp","week","Season","YT_pop","Cod_pop","Had_pop","Lat","Lon")
}
#SAVE INDIVIDUAL LIST_ALL AS THEY COME OUT SO DONT HAVE TO REDO THEM
#saveRDS(list_all,paste("list_all_more_",scenario,".RDS",sep=""))
#EXTRACT POPULATION BY STRATA FOR STRATA-SPECIFIC COMPARISON ALREADY DID THIS AND SAVED OUTPUT
# pop_by_strata <- list()
# pop_by_strata[["YT"]]<- data.frame()
# pop_by_strata[["Cod"]]<- data.frame()
# pop_by_strata[["Had"]]<- data.frame()
#
#
# for(s in short_names){
# for(yr in seq(3,22)){
# for(wk in c(13,37)){
#
# if(s=="YT"){iter=1}
# if(s=="Cod"){iter=2}
# if(s=="Had"){iter=3}
#
# #extract population by strata
# #average the two survey weeks
# values(rr[[iter]]) <- (result[[good_iter[iter]]]$pop_bios[[(wk+(52*(yr-1)))]][[paste("spp",iter,sep="")]] + result[[good_iter[iter]]]$pop_bios[[((wk+1)+(52*(yr-1)))]][[paste("spp",iter,sep="")]])/2
# #old way
# #values(r1) <- (result[[good_iter[iter]]]$pop_bios[[(wk+(52*(yr-1)))]][["spp1"]] + result[[good_iter[iter]]]$pop_bios[[((wk+1)+(52*(yr-1)))]][["spp1"]])/2
# #values(r2) <- (result[[good_iter[iter]]]$pop_bios[[(wk+(52*(yr-1)))]][["spp2"]] + result[[good_iter[iter]]]$pop_bios[[((wk+1)+(52*(yr-1)))]][["spp2"]])/2
# #values(r3) <- (result[[good_iter[iter]]]$pop_bios[[(wk+(52*(yr-1)))]][["spp3"]] + result[[good_iter[iter]]]$pop_bios[[((wk+1)+(52*(yr-1)))]][["spp3"]])/2
#
# vv <- raster::extract(rr[[iter]],GB_strata[[iter]])
# names(vv) <- GB_strata[[iter]]$STR2
# #old way
# #v1 <- raster::extract(r1,GB_strata_YT)
# #names(v1) <- GB_strata_YT$STR2
# #v2 <- raster::extract(r2,GB_strata_Cod)
# #names(v2) <- GB_strata_Cod$STR2
# #v3 <- raster::extract(r3,GB_strata_Had)
# #names(v3) <- GB_strata_Had$STR2
#
# ifelse(wk==13, sn<-1, sn<-2)
# nroww = nrow(pop_by_strata[[s]])
# #old way
# #nrow_YT = nrow(pop_by_strata[["YT"]])
# #nrow_Cod = nrow(pop_by_strata[["Cod"]])
# #nrow_Had = nrow(pop_by_strata[["Had"]])
#
#
# pop_by_strata[[s]][(nroww+1):(nroww+length(GB_strata[[s]])),"year"] <- rep(yr,length(GB_strata[[s]]))
# pop_by_strata[[s]][(nroww+1):(nroww+length(GB_strata[[s]])),"season"] <- rep(sn,length(GB_strata[[s]]))
# pop_by_strata[[s]][(nroww+1):(nroww+length(GB_strata[[s]])),"stratum"] <- GB_strata[[s]]$STR2
# pop_by_strata[[s]][(nroww+1):(nroww+length(GB_strata[[s]])),"biomass"] <- unlist(lapply(vv , function(x) if (!is.null(x)) sum(x, na.rm=TRUE) else NA ))
# # #old way
# # pop_by_strata[["YT"]][(nrow_YT+1):(nrow_YT+length(GB_strata_YT)),"year"] <- rep(yr,length(GB_strata_YT))
# # pop_by_strata[["YT"]][(nrow_YT+1):(nrow_YT+length(GB_strata_YT)),"season"] <- rep(sn,length(GB_strata_YT))
# # pop_by_strata[["YT"]][(nrow_YT+1):(nrow_YT+length(GB_strata_YT)),"stratum"] <- GB_strata_YT$STR2
# # pop_by_strata[["YT"]][(nrow_YT+1):(nrow_YT+length(GB_strata_YT)),"biomass"] <- unlist(lapply(v1 , function(x) if (!is.null(x)) sum(x, na.rm=TRUE) else NA ))
# # pop_by_strata[["Cod"]][(nrow_Cod+1):(nrow_Cod+length(GB_strata_Cod)),"year"] <- rep(yr,length(GB_strata_Cod))
# # pop_by_strata[["Cod"]][(nrow_Cod+1):(nrow_Cod+length(GB_strata_Cod)),"season"] <- rep(sn,length(GB_strata_Cod))
# # pop_by_strata[["Cod"]][(nrow_Cod+1):(nrow_Cod+length(GB_strata_Cod)),"statum"] <- GB_strata_Cod$STR2
# # pop_by_strata[["Cod"]][(nrow_Cod+1):(nrow_Cod+length(GB_strata_Cod)),"biomass"] <- unlist(lapply(v2 , function(x) if (!is.null(x)) sum(x, na.rm=TRUE) else NA ))
# # pop_by_strata[["Had"]][(nrow_Had+1):(nrow_Had+length(GB_strata_Had)),"year"] <- rep(yr,length(GB_strata_Had))
# # pop_by_strata[["Had"]][(nrow_Had+1):(nrow_Had+length(GB_strata_Had)),"season"] <- rep(sn,length(GB_strata_Had))
# # pop_by_strata[["Had"]][(nrow_Had+1):(nrow_Had+length(GB_strata_Had)),"stratum"] <- GB_strata_Had$STR2
# # pop_by_strata[["Had"]][(nrow_Had+1):(nrow_Had+length(GB_strata_Had)),"biomass"] <- unlist(lapply(v3 , function(x) if (!is.null(x)) sum(x, na.rm=TRUE) else NA ))
#
#
# }
# }
# }
# #save for later use
# saveRDS(pop_by_strata,paste("E:\\READ-PDB-blevy2-MFS2\\GB_Simulation_Results\\",scenario1,"\\pop_by_strata_",scenario1,".RDS",sep=""))
#FIND MEAN VALUE BY SEASON USING ABOVE INFORMATION. USE MEAN OF TWO SURVEY WEEKS FOR EACH SEASON
season_wks <- list(c(13,14),c(37,38))
pop_by_season <- list()
for(iter in seq(length(list_all))){
for(s in short_names){
temp <- data.frame()
idx <- 1
for(yr in seq(3,22)){
for(season in seq(2)){
temp[idx,1] <- yr
temp[idx,2] <- season
#use values in given year for weeks in specified season. only use single strata because entire population summarized in each strata in above loop
temp[idx,3] <- mean(as.numeric(list_all[[iter]][((as.numeric(list_all[[iter]][,"year"]==yr)) & (as.numeric(list_all[[iter]][,"week"]) %in% season_wks[[season]]) & (as.numeric(list_all[[iter]][,"stratum"]==29)) ),paste(s,"_pop",sep="")]))
temp[idx,4] <- 1 #Est_ratio for plotting later
idx <- idx + 1
}
}
colnames(temp) <- c("year","season","biomass","Est_ratio")
pop_by_season[[s]][[iter]] <- temp
}
}
pop_by_season[["YT"]] <- pop_by_season[["YT"]][[1]] #YT should be first in list_all
pop_by_season[["Cod"]] <- pop_by_season[["Cod"]][[2]] #Cod should be second in list_all
pop_by_season[["Had"]] <- pop_by_season[["Had"]][[3]] #Had should be third in list_all
##########################################################################################
#NOW WE NEED TO CREATE A STRATIFIED MEAN FROM EACH OF THESE SAMPLES (WITH AND WITHOUT NOISE)
##########################################################################################
#choose some strata to exclude, if desired
#George's Bank Setup by species
#YT Cod Haddock
exclude <- list()
ifelse(exclude_strata==TRUE,
{exclude[["YT"]] <- c(13,14,15,17,18)
exclude[["Cod"]] <- c(23,24,25)
exclude[["Had"]] <- c(23,24,25,29,30)},
{exclude[["YT"]] <- c(0)
exclude[["Cod"]] <- c(0)
exclude[["Had"]] <- c(0)})
setwd(orig.dir)
#BELOW WILL TAKE A MINUTE
#there are #strata * #iterations * #samp_per_iter total samples
#I AM COPYING FROM CALC_SRS_INDEX_SURVEY_BENS, which was adapted from Liz's code to create below
library(tibble)
library(ggplot2)
library(plyr)
library(dplyr)
library(tidyr)
library(readr)
library(here)
#stop output from below using this option
options(dplyr.summarise.inform = FALSE)
#load file to calculate the stratified mean
source("TestScripts/Calc_strat_mean/fn_srs_survey_BENS.R")
#setup dimensions for each species- 1 for each strata
strat_mean_all <- vector("list",length(seq(n_spp)))
for(s in short_names){
strat_mean_all[[s]] <- vector("list",length(list_all))
}
strat_mean_by_strat <- list()
#go through each strata survey, iteration, sample
# calculate SRS estimates ====
for(noise in c("NoNoise_", "WithNoise_")){
for(iter in seq(length(list_all))){
print(iter)
#if any NA columns make them zero
list_all[[iter]][is.na(list_all[[iter]])]=0
for(s in short_names){
#DEFINE INDIVIDUAL STRATUM AREAS
stratum <- sort(unique(surv_random$log.mat[,4]))
STRATUM_AREA <- na.omit(surv_random$cells_per_strata) # old way: rep(10000/nstrata,nstrata) #100x100 grid so each corner has area 2500
sv.area <- as_tibble(data.frame(stratum,STRATUM_AREA))
#remove stratum that species does not occupy
sv.area <- sv.area[(sv.area$stratum %in% strata_species[[s]]),]#sv.area %>% slice(-exclude)
#remove strata to exclude from stratified mean calculation
sv.area <- sv.area[!(sv.area$stratum %in% exclude[[s]]),]#sv.area %>% slice(-exclude)
spp <- as_tibble(list_all[[iter]],header=T) #pull out entire survey matrix
##remove strata to exclude from stratified mean calculation
spp <- spp[(spp$stratum %in% strata_species[[s]]),]
spp <- spp[!(spp$stratum %in% exclude[[s]]),]
spp$year <- as.numeric(spp$year)
#add noise to survey and overwrite existing noise, if it exists
if(noise=="WithNoise_"){
print("ADDING NOISE TO DATA")
#add noise to correct column
#YTF
if(s=="YT"){ temp_noise <- sapply(as.numeric(spp$YT_samp) , function(x){rlnorm(1,mean=log(x),sdlog=.35)} ) }
#Cod
if(s=="Cod"){ temp_noise <- sapply(as.numeric(spp$Cod_samp) , function(x){rlnorm(1,mean=log(x),sdlog=.35)} ) }
#Had
if(s=="Had"){temp_noise <- sapply(as.numeric(spp$Had_samp) , function(x){rlnorm(1,mean=log(x),sdlog=.35)} ) }
#this didnt work because it was still a data table
#temp_noise <- sapply(as.vector(spp$c(paste(short_names[s],"_samp",sep=""))) , function(x){rlnorm(1,mean=log(x),sdlog=.35)} )
try(temp_noise <- readRDS(paste0(getwd(),"/VAST/",scenario,"/",s,"/",str_dir,"_NoCovs_",noise,"/adios.RDS",sep="")) )
#if try worked above it will be a data table, if not it will be a vector
#YTF
if(s=="YT"){ ifelse(is.vector(temp_noise),spp$YT_samp <- temp_noise, spp$YT_samp <- temp_noise$YTF) }
#Cod
if(s=="Cod"){ ifelse(is.vector(temp_noise),spp$Cod_samp <- temp_noise, spp$Cod_samp <- temp_noise$Cod) }
#Had
if(s=="Had"){ ifelse(is.vector(temp_noise),spp$Had_samp <- temp_noise, spp$Had_samp <- temp_noise$Had) }
}
# get total area of stock ====
spp.strata <- unique(spp$stratum)
spp.strata <- as.numeric(spp.strata)
spp.area <- sum(sv.area$STRATUM_AREA[sv.area$stratum %in% spp.strata]) #TOTAL AREA OF ALL STRATA
temp_temp = srs_survey(df=spp, sa=sv.area, str=NULL, ta=1, sppname = paste0(s,"_samp", sep="") )
strat_mean_by_strat[[s]][[noise]][[iter]] <- temp_temp$mean.yr.strrr #record stratum-specific estimate
temp <- temp_temp$surv.ind.yr # if strata=NULL, the function will use the unique strata set found in df
# View(temp)
strat_mean_all[[s]][[noise]][[iter]] <- temp %>%
mutate(mean.yr.absolute=mean.yr*spp.area, sd.mean.yr.absolute=sd.mean.yr*spp.area,
CV.absolute=sd.mean.yr.absolute/mean.yr.absolute) # if strata=NULL, the function will use the unique strata set found in df
strat_mean_all[[s]][[noise]][[iter]] <- data.matrix(strat_mean_all[[s]][[noise]][[iter]])
colnames(strat_mean_all[[s]][[noise]][[iter]]) <- c("year","mean.yr","var.mean.yr","sd.mean.yr","CV","season","mean.yr.absolute","sd.mean.yr.absolute","CV.absolute")
}
}
strat_mean_all[["YT"]][[noise]] <- strat_mean_all[["YT"]][[noise]][[1]] #YT should be first in list_all
strat_mean_all[["Cod"]][[noise]] <- strat_mean_all[["Cod"]][[noise]][[2]] #Cod should be second in list_all
strat_mean_all[["Had"]][[noise]] <- strat_mean_all[["Had"]][[noise]][[3]] #Had should be third in list_all
strat_mean_by_strat[["YT"]][[noise]] <- strat_mean_by_strat[["YT"]][[noise]][[1]]
strat_mean_by_strat[["Cod"]][[noise]] <- strat_mean_by_strat[["Cod"]][[noise]][[2]]
strat_mean_by_strat[["Had"]][[noise]] <- strat_mean_by_strat[["Had"]][[noise]][[3]]
}
#initial scenario folder
dir.create( paste0(getwd(),"/VAST/",scenario)) #create folder to store upcoming subfolders
ifelse(exclude_strata==TRUE, strat_ex <- "excludestrata", strat_ex <- "allstrata")
#saveRDS(strat_mean_all,paste0(getwd(),"/VAST/",scenario,"/strat_mean_all_",scenario1,"_",strat_ex,".RDS"))
#EXTRACT VAST ESTIMATE BY STRATA FOR STRATA-SPECIFIC COMPARISON
source("TestScripts/vast_by_strat.R") #for vast by strata
vast_by_str <- list()
#DEFINE INDIVIDUAL STRATUM AREAS
stratum <- sort(unique(surv_random$log.mat[,4]))
STRATUM_AREA <- na.omit(surv_random$cells_per_strata) # old way: rep(10000/nstrata,nstrata) #100x100 grid so each corner has area 2500
sv.area <- as_tibble(data.frame(stratum,STRATUM_AREA))
for(cov_directory in c("_NoCovs_", "_WithCov_")){
for(noise in c("NoNoise_", "WithNoise_")){
for(s in short_names){
#remove stratum that species does not occupy
sv.area <- sv.area[(sv.area$stratum %in% strata_species[[s]]),]#sv.area %>% slice(-exclude)
#remove strata to exclude from stratified mean calculation
sv.area <- sv.area[!(sv.area$stratum %in% exclude[[s]]),]#sv.area %>% slice(-exclude)
#get stratum-specific estimates
#spp_VAST <- vast_by_strat(s,str_dir,cov_directory,noise,scenario1=scenario1, r1=r1, GB_strata_Had=GB_strata_Had, strata_species_s = strata_species[[s]] )
#ttt <- srs_survey(df=spp_VAST, sa=sv.area, str=NULL, ta=1, sppname = paste0("biomass_",s, sep=""))
#vast_by_str[[s]][[cov_directory]][[noise]] <- ttt$surv.ind.str
vast_by_str[[s]][[cov_directory]][[noise]] <- vast_by_strat(s,str_dir,cov_directory,noise,scenario1=scenario1, r1=r1, GB_strata_Had=GB_strata_Had, strata_species_s = strata_species[[s]] )
}
}
}
#load VAST fit index approximation, measure error with true value, store
#individual strata limits
# strata.limits <- list()
# strata.limits[["YT"]] <- data.frame(Georges_Bank = c(1130, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210)) #THESE ARE YTF STRATA
# strata.limits[["Cod"]] <- data.frame(Georges_Bank = c(1130, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220, 1230, 1240, 1250)) #THESE ARE COD STRATA
# strata.limits[["Had"]] <- data.frame(Georges_Bank = c(1130, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220, 1230, 1240, 1250, 1290, 1300)) #THESE ARE HAD STRATA
#What I tested for all of them, but they dont always work in each scenario
model_types <- list()
model_types[["YT"]] <- c("obsmodel7")
model_types[["Cod"]] <- c("obsmodel7")
model_types[["Had"]] <- c("obsmodel7")
#model_types[["YT"]] <- c("obsmodel5","obsmodel6")
#model_types[["Cod"]] <- c("obsmodel1","obsmodel2","obsmodel5","obsmodel6")
#model_types[["Had"]] <- c("obsmodel1","obsmodel2","obsmodel5","obsmodel6")
#Use these for IncPop_IncTemp
# model_types <- list()
# model_types[["YT"]] <- c("obsmodel5","obsmodel6")
# model_types[["Cod"]] <- c("obsmodel2","obsmodel5") #,"obsmodel6" didnt work
# model_types[["Had"]] <- c("obsmodel1")
# ifelse(exclude_strata==TRUE,
# {model_types[["YT"]] <- c("obsmodel5","obsmodel6")
# model_types[["Cod"]] <- c("obsmodel1","obsmodel2","obsmodel5") #,"obsmodel6" didnt work
# model_types[["Had"]] <- c("obsmodel1","obsmodel2","obsmodel5","obsmodel6")},
# {model_types[["YT"]] <- c("obsmodel1","obsmodel2","obsmodel3","obsmodel4","obsmodel5","obsmodel6")
# model_types[["Cod"]] <- c("obsmodel1","obsmodel2","obsmodel3","obsmodel4","obsmodel5","obsmodel6")
# model_types[["Had"]] <- c("obsmodel1","obsmodel2","obsmodel3","obsmodel4","obsmodel5","obsmodel6")}
# )
Model_settings <- list()
Model_AIC <- list()
SRS_data_all <- list()
SRS_data1 <- list()
VAST_Model_error <- list()
SRS_Model_error <- list()
VAST_fit <- list()
VAST_est <- list()
# #old fc settings
# FC_settings[["YT"]][[cov_direct]][["spring"]] <- data.frame(row.names = model_types[["YT"]])
# FC_settings[["YT"]][[cov_direct]][["fall"]] <- data.frame(row.names = model_types[["YT"]])
# FC_settings[["Cod"]][[cov_direct]][["spring"]] <- data.frame(row.names = model_types[["Cod"]])
# FC_settings[["Cod"]][[cov_direct]][["fall"]] <- data.frame(row.names = model_types[["Cod"]])
# FC_settings[["Had"]][[cov_direct]][["spring"]] <- data.frame(row.names = model_types[["Had"]])
# FC_settings[["Had"]][[cov_direct]][["fall"]] <- data.frame(row.names = model_types[["Had"]])
# FC_settings <- list(vector("list", length(short_names)))
# names(FC_settings) <- short_names
FC_settings <-list()
FC_settings_DF <- list()#list of data frames for viewing all settings at once
#initial scenario folder
setwd( paste0(orig.dir,"/VAST/",scenario,sep="")) #create folder to store upcoming subfolders
for(s in short_names){
FC_settings[[s]] <- vector("list", length= 2) #with and without covariates
names(FC_settings[[s]]) <- c("_NoCovs_","_WithCov_")
FC_settings_DF[[s]] <- data.frame()
FC_idx <- 1
for(folder in model_types[[s]]){
print(folder)
#old way for pre-paper vast runs
#for(cov_directory in c("", paste("_with_",cov_used,sep=""))){
#ifelse(cov_directory==c(""), cov_direct<-"No_Cov", cov_direct <- cov_directory)
#new way with vast runs for paper
for(cov_directory in c("_NoCovs_", "_WithCov_")){
for(noise in c("NoNoise_", "WithNoise_")){
cov_direct<- cov_directory
print(cov_direct)
FC_settings[[s]][[cov_direct]][[noise]][["spring"]] <- data.frame(row.names = model_types[[s]])
FC_settings[[s]][[cov_direct]][[noise]][["fall"]] <- data.frame(row.names = model_types[[s]])
for(sn in c("spring","fall")){
try(fit <- readRDS(paste0(getwd(),"/",s,"/",str_dir,cov_directory,noise,"/",folder,"/",sn,"/fit_",sn,".RDS")),silent=TRUE)
#set FC settings as N and then override them, if possible
FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,1] <- "N"
FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,2] <- "N"
FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,3] <- "N"
FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,4] <- "N"
try(FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,1] <- fit$settings$FieldConfig[[1]],silent=TRUE)
try( FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,2] <- fit$settings$FieldConfig[[2]],silent=TRUE)
try( FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,3] <- fit$settings$FieldConfig[[3]],silent=TRUE)
try(FC_settings[[s]][[cov_direct]][[noise]][[sn]][folder,4] <- fit$settings$FieldConfig[[4]],silent=TRUE)
vals <- c(str_dir, cov_direct,noise,sn,folder,fit$settings$FieldConfig[[1]],fit$settings$FieldConfig[[2]],fit$settings$FieldConfig[[3]],fit$settings$FieldConfig[[4]])
FC_settings_DF[[s]][FC_idx,1:length(vals)] <- vals
FC_idx <- FC_idx+1
try(VAST_fit[[s]][[cov_direct]][[noise]][[folder]][[sn]] <- read.csv(paste0(getwd(),"/",s,"/",str_dir,cov_directory,noise,"/",folder,"/",sn,"/Index.csv"), header=T),silent=TRUE)
#pull out strat mean calc
SRS_data_all[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- strat_mean_all[[s]][[noise]][strat_mean_all[[s]][[noise]][,"season"]==1,]
SRS_data_all[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- strat_mean_all[[s]][[noise]][strat_mean_all[[s]][[noise]][,"season"]==2,]
ifelse(sn == "spring",
#add year & season to these
{Year <- seq(years_cut+1,years_sim)
season <- rep(1,years_sim-years_cut)},
{Year <- seq(years_cut+1,years_sim)
season <- rep(2,years_sim-years_cut)})
try(VAST_est[[s]][[cov_direct]][[noise]][[folder]][[sn]] <- cbind(VAST_fit[[s]][[cov_direct]][[noise]][[folder]][[sn]],Year,season),silent=TRUE)
SRS_data1[[s]][[cov_direct]][[noise]][[folder]][[sn]] <- SRS_data_all[[s]][[cov_direct]][[noise]][[folder]][[sn]][,c("mean.yr.absolute","year","season","sd.mean.yr.absolute")]
try(Model_AIC[[s]][[cov_direct]][[noise]][[sn]][[folder]] <- fit$parameter_estimates$AIC,silent=TRUE)
try(Model_settings[[s]][[cov_direct]][[noise]][[sn]][[folder]] <- read.delim(paste0(getwd(),"/",s,"/",str_dir,cov_directory,noise,"/",folder,"/",sn,"/settings.txt",sep="")),silent=TRUE)
try(remove(fit),silent=TRUE)
}
}
}
}
colnames(FC_settings[[s]][[cov_direct]][[noise]][["spring"]]) <- c("Omega1","Epsilon1","Omega2","Epsilon2")
colnames(FC_settings[[s]][[cov_direct]][[noise]][["fall"]]) <- c("Omega1","Epsilon1","Omega2","Epsilon2")
}
#write.csv(FC_settings_DF,file = paste(getwd(),"/",scenario1,"_",str_dir,"_FC_settings.csv",sep=""))
#All (potentially) species
#pdf(file=paste(getwd(),"/",scenario1,"_",str_dir,"_97CI.pdf",sep=""))
#Just YT
#pdf(file=paste(getwd(),"/YT/",scenario1,"_",str_dir,"_YT.pdf",sep=""))
year_min <- 2 #in case you dont want to plot all of the years
VAST_data <- list()
SRS_data <- list()
Obsmodel_plot <- list()
Obsmodel_plot_log <- list()
Est_ratio <- list()
SRS_ratio <- list()
Est_ratio_plot <- list()
Est_ratio_plot2 <- list()
Est_ratio_plot_log <- list()
SRS_VAST_ratio <- list()
id_remove_all <- list()
Ratio_summary_info <- matrix(nrow=8*length(short_names),ncol=13)
ratio_idx <- 1
#colnames(Ratio_summary_info) <- c("Scenario","Estimate", "N_Spring >1", "N_Fall >1","Pct_Spring >1", "Pct_Fall >1", "Total>1", "Pct_Total>1", "Mean_Spring", "Mean_Fall", "Mean_overall","Mean_overall_finite", "SD_overall")
#plot stratified calculation and population estimate on same plot
#first make model output have 2 seasons to match the stratified mean calcs
for(s in short_names){ #LIST_ALL WILL BE LENGTH 3 FROM ABOVE
for(folder in model_types[[s]]){
#MODEL VALUES
model_spring = pop_by_season[[s]][pop_by_season[[s]]$season==1,"biomass"]
model_fall = pop_by_season[[s]][pop_by_season[[s]]$season==2,"biomass"]
for(cov_directory in c("_NoCovs_", "_WithCov_")){
for(noise in c("NoNoise_", "WithNoise_")){
cov_direct<- cov_directory
# 2NORM
# #calculate SPRING VAST error from each iteration
# VAST_Model_error[[s]][[folder]][["spring"]] <- norm(model_spring- VAST_est[[s]][[folder]][["spring"]][,"Estimate"] , type="2") / norm(model_spring , type ="2")
#
# #calculate FALL VAST error from each iteration
# VAST_Model_error[[s]][[folder]][["fall"]] <- norm(model_fall- VAST_est[[s]][[folder]][["fall"]][,"Estimate"] , type="2") / norm(model_fall , type ="2")
print(s)
print(folder)
print(cov_direct)
print(noise)
#ABSOLUTE SUM
#calculate SPRING VAST error from each iteration
#set as 99 and then override if possible
VAST_Model_error[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- 99
try(VAST_Model_error[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- sum(abs(model_spring- VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"Estimate"] )) / sum(abs(model_spring )),silent=TRUE)
VAST_Model_error[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- 99
#calculate FALL VAST error from each iteration
try(VAST_Model_error[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- sum(abs(model_fall- VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"Estimate"] )) / sum(abs(model_fall )),silent=TRUE)
#calculate ratio of estimate vs true value
Est_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- 99
try(Est_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"Estimate"]/model_spring,silent=TRUE)
Est_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- 99
try(Est_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"Estimate"]/model_fall,silent=TRUE)
oldnames = names(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]])
#add Est_ratio to VAST_est to plot later
VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- cbind(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]],
Est_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]],
rep(mean(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"Std..Error.for.Estimate"]),years_sim-years_cut)
)
names(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]]) <- c(oldnames,"Est_ratio","mean_sd")
oldnames = names(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]])
VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- cbind(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]],
Est_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]],
rep(mean(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"Std..Error.for.Estimate"]),years_sim-years_cut))
names(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]]) <- c(oldnames,"Est_ratio","mean_sd")
#calculate SPRING SRS error from each iteration
SRS_Model_error[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- sum(abs(model_spring- SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"mean.yr.absolute"] )) / sum(abs(model_spring ))
#calculate FALL SRS error from each iteration
SRS_Model_error[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- sum(abs(model_fall- SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"mean.yr.absolute"] )) / sum(abs(model_fall ))
#store VAST stuff to plot later
#first load a blank version and override if possible
VAST_data[[s]][[cov_direct]][[noise]][[folder]] <- readRDS(file = paste0(orig.dir,"/VAST/zero_VAST_est.RDS",sep="") )
#for decpop_contemp
#if(((!((s=="Cod"&folder=="obsmodel6")|(s=="Had"&folder=="obsmodel6"))))){ try(VAST_data[[s]][[folder]] <- rbind(VAST_est[[s]][[folder]][["spring"]],VAST_est[[s]][[folder]][["fall"]]),silent=TRUE)}
#if vast estimate for each season, use them
if((length(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]][1,])>2)&(length(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]][1,])>2)){VAST_data[[s]][[cov_direct]][[noise]][[folder]] <- rbind(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]],VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]])}
#if missing one, use zeros in one and the estimate for the other
if((length(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]][1,])==2)&(length(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]][1,])>2)){VAST_data[[s]][[cov_direct]][[noise]][[folder]]<- rbind(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]],VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==2,] )}
if((length(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]][1,])>2)&(length(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]][1,])==2)){VAST_data[[s]][[cov_direct]][[noise]][[folder]]<- rbind(VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]],VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==1,] )}
#calculate SRS ratio and add to data
SRS_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"mean.yr.absolute"]/model_fall
SRS_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"mean.yr.absolute"]/model_spring
#srs/vast ratio
SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- VAST_est[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"Estimate"]/SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"mean.yr.absolute"]
SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- VAST_est[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"Estimate"]/SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"mean.yr.absolute"]
#calculate Standard deviation of VAST/SRS ratio after removing elements outside of 95% confidence interval
ratios=SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]]
sd1 = sd(ratios)
CI=2.17
id_remove = which(ratios >= (1+CI*sd1))
while(length(id_remove)>0){
ratios <- ratios[-id_remove] #remove entries outisde of 95% interval
sd1 = sd(ratios) #recalculate sd without large values
id_remove = which(ratios >= (1+CI*sd1))
}
#remove and infinities
ratios = ratios[is.finite(ratios)]
id_remove_all[[s]][[cov_direct]][[noise]][[folder]][["spring"]] = which(!(SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]]%in%ratios)) + 2
namesorig=colnames(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]])
SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]] <- cbind(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]],
SRS_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]],
SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]],
rep(mean(SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]][is.finite(SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["spring"]])],na.rm=T),years_sim-years_cut),
rep(sd(ratios),years_sim-years_cut),
rep(mean(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]][,"sd.mean.yr.absolute"],na.rm=T),years_sim-years_cut)
)
colnames(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]]) <- c(namesorig,"Est_ratio","SRS_VAST_ratio","SRS_VAST_mean","SRS_VAST_sd","mean_sd")
#calculate Standard deviation of VAST/SRS ratio after removing elements outside of 95% confidence interval
ratios=SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]]
sd1 = sd(ratios)
id_remove = which(ratios >= (1+CI*sd1))
while(length(id_remove)>0){
ratios <- ratios[-id_remove] #remove entries outisde of 95% interval
sd1 = sd(ratios) #recalculate sd without large values
id_remove = which(ratios >= (1+CI*sd1))
}
#remove and infinities
ratios = ratios[is.finite(ratios)]
id_remove_all[[s]][[cov_direct]][[noise]][[folder]][["fall"]] = which(!(SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]]%in%ratios)) + 2
namesorig=colnames(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]])
SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]] <- cbind(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]],
SRS_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]],
SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]],
rep(mean(SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]][is.finite(SRS_VAST_ratio[[s]][[cov_direct]][[noise]][[folder]][["fall"]])],na.rm=T),years_sim-years_cut),
rep(sd(ratios,na.rm=T),years_sim-years_cut),
rep(mean(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]][,"sd.mean.yr.absolute"],na.rm=T),years_sim-years_cut)
)
colnames(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]]) <- c(namesorig,"Est_ratio","SRS_VAST_ratio","SRS_VAST_mean","SRS_VAST_sd","mean_sd")
SRS_data[[s]][[cov_direct]][[noise]][[folder]] <- rbind(SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["spring"]],SRS_data1[[s]][[cov_direct]][[noise]][[folder]][["fall"]])
######################################################
# GO THROUGH SRS_DATA AND VAST_DATA IN CURRENT FOLDER TO
# 1) COUNT NUMBER OF OVER/UNDER ESTIMATE
# 2) CALCULATE AVERAGE OVER/UNDER ESTIMATE
######################################################
#colnames(Ratio_summary_info) <- c("Scenario","Estimate", "N_Spring >1", "N_Fall >1","Pct_Spring >1", "Pct_Fall >1", "Total>1", "Pct_Total>1", "Mean_Spring", "Mean_Fall", "Mean_overall", "Mean_overall_finite", "SD_overall")
Ratio_summary_info[ratio_idx,1] <- paste(s,"_",cov_direct,"_",noise,"_",folder,"_",sep="")
Ratio_summary_info[ratio_idx,2] <- "Strat Mean"
Ratio_summary_info[ratio_idx,3] <- as.numeric(length(SRS_data[[s]][[cov_direct]][[noise]][[folder]][SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==1 & SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,1])) #as.numeric(nrow(SRS_data[[s]][[cov_direct]][[noise]][[folder]][SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==1 & SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,]))
Ratio_summary_info[ratio_idx,4] <- as.numeric(length(SRS_data[[s]][[cov_direct]][[noise]][[folder]][SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==2 & SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,1])) #as.numeric(nrow(SRS_data[[s]][[cov_direct]][[noise]][[folder]][SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==2 & SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,]))
Ratio_summary_info[ratio_idx,5] <- as.numeric(Ratio_summary_info[ratio_idx,3])/20
Ratio_summary_info[ratio_idx,6] <- as.numeric(Ratio_summary_info[ratio_idx,4])/20
Ratio_summary_info[ratio_idx,7] <- as.numeric(Ratio_summary_info[ratio_idx,3])+as.numeric(Ratio_summary_info[ratio_idx,4])
Ratio_summary_info[ratio_idx,8] <- as.numeric(Ratio_summary_info[ratio_idx,7])/40
Ratio_summary_info[ratio_idx,9] <- mean(SRS_data[[s]][[cov_direct]][[noise]][[folder]][SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==1 ,"Est_ratio"])
Ratio_summary_info[ratio_idx,10] <- mean(SRS_data[[s]][[cov_direct]][[noise]][[folder]][SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==2 ,"Est_ratio"])
Ratio_summary_info[ratio_idx,11] <- mean(SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"])
Ratio_summary_info[ratio_idx,12] <- mean(SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"][is.finite(SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"])])
Ratio_summary_info[ratio_idx,13] <- sd(SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"][is.finite(SRS_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"])])
Ratio_summary_info[ratio_idx+1,1] <- paste(s,"_",cov_direct,"_",noise,"_",folder,"_",sep="")
Ratio_summary_info[ratio_idx+1,2] <- "VAST"
Ratio_summary_info[ratio_idx+1,3] <- as.numeric(length(VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==1 & VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,1])) #as.numeric(nrow(VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==1 & VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,]))
Ratio_summary_info[ratio_idx+1,4] <- as.numeric(length(VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==2 & VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,1])) #as.numeric(nrow(VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==2 & VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"]>1,]))
Ratio_summary_info[ratio_idx+1,5] <- as.numeric(Ratio_summary_info[ratio_idx+1,3])/20
Ratio_summary_info[ratio_idx+1,6] <- as.numeric(Ratio_summary_info[ratio_idx+1,4])/20
Ratio_summary_info[ratio_idx+1,7] <- as.numeric(Ratio_summary_info[ratio_idx+1,3])+as.numeric(Ratio_summary_info[ratio_idx+1,4])
Ratio_summary_info[ratio_idx+1,8] <- as.numeric(Ratio_summary_info[ratio_idx+1,7])/40
Ratio_summary_info[ratio_idx+1,9] <- mean(VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==1 ,"Est_ratio"])
Ratio_summary_info[ratio_idx+1,10] <- mean(VAST_data[[s]][[cov_direct]][[noise]][[folder]][VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"season"]==2 ,"Est_ratio"])
Ratio_summary_info[ratio_idx+1,11] <- mean(VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"])
Ratio_summary_info[ratio_idx+1,12] <- mean(VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"][is.finite(VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"])])
Ratio_summary_info[ratio_idx+1,13] <- sd(VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"][is.finite(VAST_data[[s]][[cov_direct]][[noise]][[folder]][,"Est_ratio"])])
ratio_idx <- ratio_idx + 2
}
}
long_names <- c("Yellowtail Flounder", "Atlantic Cod", "Haddock")
#NEW WAY PLOTTING 3 TOGETHER ON SAME PAGE
# #field config settings for plotting
# FC_fall = c(FC_settings[[s]]$fall[folder,1],FC_settings[[s]]$fall[folder,2],FC_settings[[s]]$fall[folder,3],FC_settings[[s]]$fall[folder,4])
# FC_spring = c(FC_settings[[s]]$spring[folder,1],FC_settings[[s]]$spring[folder,2],FC_settings[[s]]$spring[folder,3],FC_settings[[s]]$spring[folder,4])
#
#store each obsmodel plot
Obsmodel_plot[[s]][[cov_direct]][[noise]][[folder]] <- ggplot() +
#this way plots data by season
geom_point(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=biomass, group = season, color = "Model"),size=3) +
geom_line(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=biomass, group =season, color = "Model"),size=1) +
#plot VAST estimate without covariates with NO noise
geom_errorbar(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST No Cov No Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST No Cov No Noise"),size=2)+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST No Cov No Noise"))+
#plot VAST estimate without covariates with WITH noise
geom_errorbar(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST No Cov W Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST No Cov W Noise"),size=2)+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST No Cov W Noise"))+
#plot VAST estimate with covariates with NO noise
geom_errorbar(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST w Cov No Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST w Cov No Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST w Cov No Noise"))+
#plot VAST estimate with covariates WITH noise
geom_errorbar(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST w Cov w Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST w Cov w Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season, color = "VAST w Cov w Noise"))+
#plot stratified calculation data with NO noise
geom_errorbar(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Strat Mean No Noise"),width=.3) +
# geom_linerange(data=as.data.frame(SRS_data[[s]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean")) +
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Strat Mean No Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Strat Mean No Noise"))+
#plot stratified calculation data with NO noise
geom_errorbar(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Strat Mean W Noise"),width=.3) +
# geom_linerange(data=as.data.frame(SRS_data[[s]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean")) +
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Strat Mean W Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Strat Mean W Noise"))+
facet_wrap(~ season, ncol =1) +
# labs(x="year",y="Biomass", title = paste(folder," SeV=",round(VAST_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FC=", toString(FC_spring),
# " SeSM=",round(SRS_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FeV=",round(VAST_Model_error[[s]][[folder]][["fall"]],digits=2),
# " FC=", toString(FC_fall),
# " FeSM=",round(SRS_Model_error[[s]][[folder]][["fall"]],digits=2),sep=""), color ="" )
labs(x="year",y="Biomass", title = paste(paste(s," ",folder,sep=""), "\n", #new line
paste(" V.NC.NN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["spring"]],digits=2),
" V.NC.YN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["spring"]],digits=2),
" V.YC.NN=",round(VAST_Model_error[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][["spring"]],digits=2),
" V.YC.YN=",round(VAST_Model_error[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][["spring"]],digits=2),
" SM.NN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["spring"]],digits=2),
" SM.YN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["spring"]],digits=2),sep=""), "\n", #new line
paste(" V.NC.NN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["fall"]],digits=2),
" V.NC.YN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["fall"]],digits=2),
" V.YC.NN=",round(VAST_Model_error[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][["fall"]],digits=2),
" V.YC.YN=",round(VAST_Model_error[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][["fall"]],digits=2),
" SM.NN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["fall"]],digits=2),
" SM.YN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["fall"]],digits=2),sep=""),sep=""), color ="" )+
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
#one plot per page
print(Obsmodel_plot[[s]][[cov_direct]][[noise]][[folder]])
#NEW WAY PLOTTING 3 TOGETHER ON SAME PAGE ON LOGARITHMIC SCALE
# #field config settings for plotting
# FC_fall = c(FC_settings[[s]]$fall[folder,1],FC_settings[[s]]$fall[folder,2],FC_settings[[s]]$fall[folder,3],FC_settings[[s]]$fall[folder,4])
# FC_spring = c(FC_settings[[s]]$spring[folder,1],FC_settings[[s]]$spring[folder,2],FC_settings[[s]]$spring[folder,3],FC_settings[[s]]$spring[folder,4])
#
#store each obsmodel plot
Obsmodel_plot_log[[s]][[cov_direct]][[noise]][[folder]] <- ggplot() +
#this way plots data by season
geom_point(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=log(biomass), group = season, color = "Model"),size=3) +
geom_line(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=log(biomass), group =season, color = "Model"),size=1) +
#plot VAST estimate without covariates with NO noise
geom_errorbar(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season,ymin=log(Estimate)-(1.96*Std..Error.for.ln.Estimate.), ymax=log(Estimate)+(1.96*Std..Error.for.ln.Estimate.), color = "VAST No Cov No Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.ln.Estimate.), ymax=Estimate+(1.96*Std..Error.for.ln.Estimate.), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST No Cov No Noise"),size=2)+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST No Cov No Noise"))+
#plot VAST estimate without covariates with WITH noise
geom_errorbar(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season,ymin=log(Estimate)-(1.96*Std..Error.for.ln.Estimate.), ymax=log(Estimate)+(1.96*Std..Error.for.ln.Estimate.), color = "VAST No Cov W Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.ln.Estimate.), ymax=Estimate+(1.96*Std..Error.for.ln.Estimate.), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST No Cov W Noise"),size=2)+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST No Cov W Noise"))+
#plot VAST estimate with covariates with NO noise
geom_errorbar(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season,ymin=log(Estimate)-(1.96*Std..Error.for.ln.Estimate.), ymax=log(Estimate)+(1.96*Std..Error.for.ln.Estimate.), color = "VAST w Cov No Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.ln.Estimate.), ymax=Estimate+(1.96*Std..Error.for.ln.Estimate.), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST w Cov No Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST w Cov No Noise"))+
#plot VAST estimate with covariates WITH noise
geom_errorbar(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season,ymin=log(Estimate)-(1.96*Std..Error.for.ln.Estimate.), ymax=log(Estimate)+(1.96*Std..Error.for.ln.Estimate.), color = "VAST w Cov w Noise"),width=.3) +
#geom_linerange(data=subset(VAST_data[[s]][[folder]],Year>=year_min),aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.ln.Estimate.), ymax=Estimate+(1.96*Std..Error.for.ln.Estimate.), color = "VAST Estimate")) +
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST w Cov w Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Estimate),group=season, color = "VAST w Cov w Noise"))+
#plot stratified calculation data with NO noise
# geom_errorbar(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]]),aes(x=year,y=log(mean.yr.absolute),group=season,ymin=log(mean.yr.absolute)-(1.96*log(sd.mean.yr.absolute)), ymax=log(mean.yr.absolute)+(1.96*log(sd.mean.yr.absolute)), color = "Strat Mean No Noise"),width=.3) +
# geom_linerange(data=as.data.frame(SRS_data[[s]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean")) +
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]]),aes(x=year,y=log(mean.yr.absolute),group=season, color = "Strat Mean No Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]]),aes(x=year,y=log(mean.yr.absolute),group=season, color = "Strat Mean No Noise"))+
#plot stratified calculation data with NO nois
# geom_errorbar(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]]),aes(x=year,y=log(mean.yr.absolute),group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Strat Mean W Noise"),width=.3) +
# geom_linerange(data=as.data.frame(SRS_data[[s]][[folder]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean")) +
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]]),aes(x=year,y=log(mean.yr.absolute),group=season, color = "Strat Mean W Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]]),aes(x=year,y=log(mean.yr.absolute),group=season, color = "Strat Mean W Noise"))+
facet_wrap(~ season, ncol =1) +
# labs(x="year",y="Biomass", title = paste(folder," SeV=",round(VAST_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FC=", toString(FC_spring),
# " SeSM=",round(SRS_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FeV=",round(VAST_Model_error[[s]][[folder]][["fall"]],digits=2),
# " FC=", toString(FC_fall),
# " FeSM=",round(SRS_Model_error[[s]][[folder]][["fall"]],digits=2),sep=""), color ="" )
labs(x="year",y="log(Biomass)", title = paste(paste(s," ",folder,sep=""), "\n", #new line
paste(" V.NC.NN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["spring"]],digits=2),
" V.NC.YN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["spring"]],digits=2),
" V.YC.NN=",round(VAST_Model_error[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][["spring"]],digits=2),
" V.YC.YN=",round(VAST_Model_error[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][["spring"]],digits=2),
" SM.NN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["spring"]],digits=2),
" SM.YN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["spring"]],digits=2),sep=""), "\n", #new line
paste(" V.NC.NN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["fall"]],digits=2),
" V.NC.YN=",round(VAST_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["fall"]],digits=2),
" V.YC.NN=",round(VAST_Model_error[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][["fall"]],digits=2),
" V.YC.YN=",round(VAST_Model_error[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][["fall"]],digits=2),
" SM.NN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]][["fall"]],digits=2),
" SM.YN=",round(SRS_Model_error[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]][["fall"]],digits=2),sep=""),sep=""), color ="" )+
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
#one plot per page
print(Obsmodel_plot_log[[s]][[cov_direct]][[noise]][[folder]])
# for more than one plot per page
# gridExtra::grid.arrange(Obsmodel_plot[[1]],Obsmodel_plot[[2]],Obsmodel_plot[[3]],nrow=3)
# gridExtra::grid.arrange(Obsmodel_plot[[4]],Obsmodel_plot[[5]],Obsmodel_plot[[6]],nrow=3)
#plot estimate ratios by season
Est_ratio_plot[[s]][[cov_direct]][[noise]][[folder]] <- ggplot() +
#this way plots data by season divided by itself so it equals 1
geom_point(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=Est_ratio, group = season, color = "Model"),size=3) +
geom_line(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=Est_ratio, group =season, color = "Model"),size=1) +
#plot VAST estimate without covariates with NO noise
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST No Cov No Noise"))+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST No Cov No Noise"))+
#plot VAST estimate without covariates with WITH noise
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST No Cov W Noise"))+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST No Cov W Noise"))+
#plot VAST estimate with covariates with NO noise
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST w Cov No Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST w Cov No Noise"))+
#plot VAST estimate with covariates WITH noise
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST w Cov w Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season, color = "VAST w Cov w Noise"))+
#plot stratified calculation data with NO noise
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][,1:5]),aes(x=year,y=Est_ratio,group=season, color = "Strat Mean No Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][,1:5]),aes(x=year,y=Est_ratio,group=season, color = "Strat Mean No Noise"))+
#plot stratified calculation data with NO noise
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][,1:5]),aes(x=year,y=Est_ratio,group=season, color = "Strat Mean W Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][,1:5]),aes(x=year,y=Est_ratio,group=season, color = "Strat Mean W Noise"))+
facet_wrap(~ season, ncol =1) +
# labs(x="year",y="Biomass", title = paste(folder," SeV=",round(VAST_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FC=", toString(FC_spring),
# " SeSM=",round(SRS_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FeV=",round(VAST_Model_error[[s]][[folder]][["fall"]],digits=2),
# " FC=", toString(FC_fall),
# " FeSM=",round(SRS_Model_error[[s]][[folder]][["fall"]],digits=2),sep=""), color ="" )
labs(x="year",y="Estimate/Model", title = paste(paste(s," ",folder,sep=""),sep=""), color ="" )+
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
#one plot per page
print(Est_ratio_plot[[s]][[cov_direct]][[noise]][[folder]])
#plot estimate ratio by season ON LOG SCALE
Est_ratio_plot_log[[s]][[cov_direct]][[noise]][[folder]] <- ggplot() +
#this way plots data by season divided by itself so it equals 1
geom_point(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=log(Est_ratio), group = season, color = "Model"),size=3) +
geom_line(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=log(Est_ratio), group =season, color = "Model"),size=1) +
#plot VAST estimate without covariates with NO noise
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST No Cov No Noise"))+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST No Cov No Noise"))+
#plot VAST estimate without covariates with WITH noise
geom_point(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST No Cov W Noise"))+
geom_line(data=subset(VAST_data[[s]][["_NoCovs_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST No Cov W Noise"))+
#plot VAST estimate with covariates with NO noise
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST w Cov No Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST w Cov No Noise"))+
#plot VAST estimate with covariates WITH noise
geom_point(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST w Cov w Noise"))+
geom_line(data=subset(VAST_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]],Year>=year_min),aes(x=Year,y=log(Est_ratio),group=season, color = "VAST w Cov w Noise"))+
#plot stratified calculation data with NO noise
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][,1:5]),aes(x=year,y=log(Est_ratio),group=season, color = "Strat Mean No Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["NoNoise_"]][[folder]][,1:5]),aes(x=year,y=log(Est_ratio),group=season, color = "Strat Mean No Noise"))+
#plot stratified calculation data with NO noise
geom_point(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][,1:5]),aes(x=year,y=log(Est_ratio),group=season, color = "Strat Mean W Noise"))+
geom_line(data=as.data.frame(SRS_data[[s]][["_WithCov_"]][["WithNoise_"]][[folder]][,1:5]),aes(x=year,y=log(Est_ratio),group=season, color = "Strat Mean W Noise"))+
facet_wrap(~ season, ncol =1) +
# labs(x="year",y="Biomass", title = paste(folder," SeV=",round(VAST_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FC=", toString(FC_spring),
# " SeSM=",round(SRS_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FeV=",round(VAST_Model_error[[s]][[folder]][["fall"]],digits=2),
# " FC=", toString(FC_fall),
# " FeSM=",round(SRS_Model_error[[s]][[folder]][["fall"]],digits=2),sep=""), color ="" )
labs(x="year",y="log(Estimate/Model)", title = paste(paste(s," ",folder,sep=""),sep=""), color ="" )+
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
#one plot per page
print(Est_ratio_plot_log[[s]][[cov_direct]][[noise]][[folder]])
}
}
plotss_VAST <- list()
plotss_SRS <- list()
plotss_SRS_VAST <- list()
plotss_SRS_sd <- list()
plotss_VAST_sd <- list()
for(s in short_names){ #LIST_ALL WILL BE LENGTH 3 FROM ABOVE
s_idx <- 1
s_idx2 <- 1
for(folder in model_types[[s]]){
for(noise in c("NoNoise_", "WithNoise_")){
for(cov_directory in c("_NoCovs_", "_WithCov_")){
cov_direct<- cov_directory
dd= as.data.frame(subset(VAST_data[[s]][[cov_direct]][[noise]][[folder]],Year>=year_min))
#extract slope of trend line by season
intercepts <- dd %>%
group_by(season) %>%
do({
mod = lm(Est_ratio ~ Year, data = .)
data.frame(Intercept = coef(mod)[1],
Slope = coef(mod)[2])
})
plotss_VAST[[s_idx]] <- ggplot() +
#this way plots data by season divided by itself so it equals 1
geom_point(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=Est_ratio, group = season, color = "Model"),size=3) +
geom_line(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=Est_ratio, group =season, color = "Model"),size=1) +
# labs(x="year",y="Biomass", title = paste(folder," SeV=",round(VAST_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FC=", toString(FC_spring),
# " SeSM=",round(SRS_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FeV=",round(VAST_Model_error[[s]][[folder]][["fall"]],digits=2),
# " FC=", toString(FC_fall),
# " FeSM=",round(SRS_Model_error[[s]][[folder]][["fall"]],digits=2),sep=""), color ="" )
#plot VAST estimate without covariates with NO noise
geom_point(data=subset(VAST_data[[s]][[cov_direct]][[noise]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season))+
geom_line(data=subset(VAST_data[[s]][[cov_direct]][[noise]][[folder]],Year>=year_min),aes(x=Year,y=Est_ratio,group=season))+
# geom_smooth(data=subset(VAST_data[[s]][[cov_direct]][[noise]][[folder]],Year>=year_min),method=lm, level=0.95, aes(x=Year,y=Est_ratio,group=season))+
# annotate("text",x=5,y=max(dd$Est_ratio)*.75,label=paste("M=",as.character(round(intercepts$Slope[[1]],3))," ",as.character(round(intercepts$Slope[[2]],3)),sep=""))+
labs(x="year",y="Estimate/Model", title = paste(paste(s," ",folder," VAST",cov_direct,noise,
" S_M=",round(intercepts$Slope[[1]],3),
" F_M=",round(intercepts$Slope[[2]],3),sep=""),sep=""), color ="" )+
facet_wrap(~ season, ncol =1) +
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
#plot VAST/SRS estimate ratios by season
ll = length(SRS_data[[s]][[cov_direct]][[noise]][[folder]][1,])
dd= as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]])
dd$SRS_VAST_ratio[is.na(dd$SRS_VAST_ratio) | dd$SRS_VAST_ratio == "Inf"] <- NA
#extract slope of trend line by season
intercepts <- dd %>%
group_by(season) %>%
do({
mod = lm(SRS_VAST_ratio ~ Year, data = .)
data.frame(Intercept = coef(mod)[1],
Slope = coef(mod)[2])
})
plotss_SRS_VAST[[s_idx]] <- ggplot(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),SRS_VAST_ratio>=0)) +
geom_point(aes(x=year,y=SRS_VAST_ratio,group=season))+
geom_line(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),SRS_VAST_ratio>=0),aes(x=year,y=SRS_VAST_ratio,group=season))+
geom_errorbar(data=as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]) %>% filter(season%in%c(1,2) & !(year%in%c())),aes(x=year,y=SRS_VAST_sd,group=season,ymin=1-(CI*SRS_VAST_sd), ymax=1+(CI*SRS_VAST_sd)),width=.3) +
annotate("text",x=10,y=max(dd$SRS_VAST_ratio)*.75,label=paste(paste(as.character(id_remove_all[[s]][[cov_direct]][[noise]][[folder]][["spring"]]),collapse=","), "\n",
paste(as.character(id_remove_all[[s]][[cov_direct]][[noise]][[folder]][["fall"]]),collapse=",")))+
#geom_smooth(method=lm, level=0.95, aes(x=year,y=SRS_VAST_ratio,group=season))+
# annotate("text",x=5,y=max(dd$SRS_VAST_ratio)*.75,label=paste("M=",as.character(round(intercepts$Slope[[1]],3))," ",as.character(round(intercepts$Slope[[2]],3)),sep=""))+
#plot mean values
geom_line(data=as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),aes(x=year,y=1,group=season))+
labs(x="year",y="VAST/SRS", title = paste(paste(s," ",folder," VAST/SRS 97% CI",cov_direct,noise,
" S_M=",round(intercepts$Slope[[1]],3),
" F_M=",round(intercepts$Slope[[2]],3),sep=""),sep=""), color ="" )+
facet_wrap(~ season, ncol =1) +
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
#plot VAST variance
dd=subset(as.data.frame(VAST_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min)
#extract slope of trend line by season
intercepts <- dd %>%
group_by(season) %>%
do({
mod = lm(Std..Error.for.Estimate ~ Year, data = .)
data.frame(Intercept = coef(mod)[1],
Slope = coef(mod)[2])
})
plotss_VAST_sd[[s_idx]] <- ggplot(data=subset(as.data.frame(VAST_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min)) +
geom_point(aes(x=Year,y=Std..Error.for.Estimate,group=season))+
geom_line(aes(x=Year,y=Std..Error.for.Estimate,group=season))+
#plot mean values
geom_line(aes(x=Year,y=mean_sd,group=season))+
# geom_smooth(method=lm, level=0.95, aes(x=Year,y=Std..Error.for.Estimate,group=season))+
geom_errorbar(data=as.data.frame(VAST_data[[s]][[cov_direct]][[noise]][[folder]]) %>% filter(season%in%c(1,2) & !(Year%in%c())),aes(x=Year,y=mean_sd,group=season,ymin=mean_sd-(1.96*sd(Std..Error.for.Estimate)), ymax=mean_sd+(1.96*sd(Std..Error.for.Estimate))),width=.3) +
# annotate("text",x=5,y=max(dd$Std..Error.for.Estimate)*.75,label=paste("M=",as.character(round(intercepts$Slope[[1]],0))," ",as.character(round(intercepts$Slope[[2]],0)),sep=""))+
labs(x="year",y="VAST SE", title = paste(paste(s," ",folder," VAST SE",cov_direct,noise,
" S_M=",round(intercepts$Slope[[1]],1),
" F_M=",round(intercepts$Slope[[2]],1),sep=""),sep=""), color ="" )+
facet_wrap(~ season, ncol =1) +
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
s_idx=s_idx+1
}
dd=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min)
#extract slope of trend line by season
intercepts <- dd %>%
group_by(season) %>%
do({
mod = lm(Est_ratio ~ Year, data = .)
data.frame(Intercept = coef(mod)[1],
Slope = coef(mod)[2])
})
plotss_SRS[[s_idx2]] <- ggplot() +
#this way plots data by season divided by itself so it equals 1
geom_point(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=Est_ratio, group = season, color = "Model"),size=3) +
geom_line(data = subset(as.data.frame(pop_by_season[[s]]),year>=year_min), aes(x=as.numeric(year),y=Est_ratio, group =season, color = "Model"),size=1) +
# labs(x="year",y="Biomass", title = paste(folder," SeV=",round(VAST_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FC=", toString(FC_spring),
# " SeSM=",round(SRS_Model_error[[s]][[folder]][["spring"]],digits=2),
# " FeV=",round(VAST_Model_error[[s]][[folder]][["fall"]],digits=2),
# " FC=", toString(FC_fall),
# " FeSM=",round(SRS_Model_error[[s]][[folder]][["fall"]],digits=2),sep=""), color ="" )
#plot VAST estimate without covariates with NO noise
geom_point(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min),aes(x=year,y=Est_ratio,group=season))+
geom_line(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min),aes(x=year,y=Est_ratio,group=season))+
geom_errorbar(data=as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),aes(x=year,y=Est_ratio,group=season,ymin=Est_ratio-(1.96*sd(Est_ratio)), ymax=Est_ratio+(1.96*sd(Est_ratio))),width=.3) +
labs(x="year",y="Estimate/Model", title = paste(paste(s," ",folder," SRS",noise,
" S_M=",round(intercepts$Slope[[1]],3),
" F_M=",round(intercepts$Slope[[2]],3),sep=""),sep=""), color ="" )+
# geom_smooth(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min),
# method=lm, level=0.95, aes(x=year,y=Est_ratio,group=season))+
# annotate("text",x=5,y=max(dd$Est_ratio)*.75,label=paste("M=",as.character(round(intercepts$Slope[[1]],3))," ",as.character(round(intercepts$Slope[[2]],3)),sep=""))+
facet_wrap(~ season, ncol =1) +
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
dd=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min)
#extract slope of trend line by season
intercepts <- dd %>%
group_by(season) %>%
do({
mod = lm(sd.mean.yr.absolute ~ Year, data = .)
data.frame(Intercept = coef(mod)[1],
Slope = coef(mod)[2])
})
plotss_SRS_sd[[s_idx2]] <- ggplot(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min)) +
geom_point(aes(x=year,y=sd.mean.yr.absolute,group=season))+
geom_line(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min),aes(x=year,y=sd.mean.yr.absolute,group=season))+
geom_errorbar(data=as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),aes(x=year,y=mean_sd,group=season,ymin=mean_sd-(1.96*sd(sd.mean.yr.absolute)), ymax=mean_sd+(1.96*sd(sd.mean.yr.absolute))),width=.3) +
# geom_smooth(method=lm, level=0.95, aes(x=year,y=sd.mean.yr.absolute,group=season))+
# annotate("text",x=5,y=max(dd$sd.mean.yr.absolute)*.75,label=paste("M=",as.character(round(intercepts$Slope[[1]],0))," ",as.character(round(intercepts$Slope[[2]],0)),sep=""))+
#plot mean values
geom_line(data=as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),aes(x=year,y=mean_sd,group=season))+
labs(x="year",y="SRS SD", title = paste(paste(s," ",folder," SRS SD",cov_direct,noise,
" S_M=",round(intercepts$Slope[[1]],1),
" F_M=",round(intercepts$Slope[[2]],1),sep=""),sep=""), color ="" )+
facet_wrap(~ season, ncol =1) +
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
s_idx2=s_idx2+1
}}
#plot estimate ratios on one page
gridExtra::grid.arrange(plotss_VAST[[1]],plotss_VAST[[2]],plotss_VAST[[3]],plotss_VAST[[4]],plotss_SRS[[1]],plotss_SRS[[2]],ncol=2)
# gridExtra::grid.arrange(Obsmodel_plot[[4]],Obsmodel_plot[[5]],Obsmodel_plot[[6]],nrow=3)
#plot SR/VAST ratios on another page
gridExtra::grid.arrange(plotss_SRS_VAST[[1]],plotss_SRS_VAST[[2]],plotss_SRS_VAST[[3]],plotss_SRS_VAST[[4]],ncol=2)
#plot SR/VAST sd on another page
gridExtra::grid.arrange(plotss_VAST_sd[[1]],plotss_VAST_sd[[2]],plotss_VAST_sd[[3]],plotss_VAST_sd[[4]],plotss_SRS_sd[[1]],plotss_SRS_sd[[2]],ncol=2)
}
#name columns
colnames(Ratio_summary_info) <- c("Scenario","Estimate", "N_Spring >1", "N_Fall >1","Pct_Spring >1", "Pct_Fall >1", "Total>1", "Pct_Total>1", "Mean_Spring", "Mean_Fall", "Mean_overall", "Mean_overall_finite","SD_overall")
#save as csv
#write.csv(Ratio_summary_info,file = paste(getwd(),"/",scenario1,"_",str_dir,"_Ratio_summary_info_new.csv",sep=""))
#PLOT SOME STUFF FROM SURVEYS
for(s in short_names){
for(season in c("SPRING","FALL")){
list_all[[s]] <- as.data.frame(list_all[[s]])%>%filter(stratum %in% strata_species[[s]])
ppp<-ggplot(data=as.data.frame(list_all[[s]])%>%filter(Season==season ))+
geom_point(aes(x=as.numeric(year),y=as.numeric(YT_samp),group=stratum,color=year))+
# geom_line(data=subset(as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),Year>=year_min),aes(x=year,y=sd.mean.yr.absolute,group=season))+
#
# geom_errorbar(data=as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),aes(x=year,y=mean_sd,group=season,ymin=mean_sd-(1.96*sd(sd.mean.yr.absolute)), ymax=mean_sd+(1.96*sd(sd.mean.yr.absolute))),width=.3) +
#
# #plot mean values
# geom_line(data=as.data.frame(SRS_data[[s]][[cov_direct]][[noise]][[folder]]),aes(x=year,y=mean_sd,group=season))+
#
labs(x="year",y="Tow Biomass", title = paste(paste(s," ",folder," Survey Biomass ",season,sep=""),sep=""), color ="" )+
#
facet_wrap(~ stratum, ncol =3) +
theme(axis.text=element_text(size=12),
axis.title=element_text(size=12),
title=element_text(size=8))
print(ppp)
}
}
dev.off()
##PLOT ESTIMATES BY STRATA
source(paste(orig.dir,"/TestScripts/plot_estimates_by_strat.R",sep=""))
detach(package:plyr)
library(dplyr)
library(ggplot2)
plot_estimates_by_strat()
#
BELOW HAS NOT YET BEEN UPDATED TO BE GENERALIZED FOR ALL SPECIES. ONLY APPLIES TO YTF
##########################################################################################
#Next plot scatterplot of errors
##########################################################################################
#first create data from for each
#1- stratified mean data
df_SRS_spring <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(SRS_error_spring[[1]], SRS_error_spring[[2]], SRS_error_spring[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("spring",length(list_all)),n_spp),
Model = rep(rep("Strat. Mean",length(list_all)),n_spp),
)
df_SRS_fall <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(SRS_error_fall[[1]], SRS_error_fall[[2]], SRS_error_fall[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("fall",length(list_all)),n_spp),
Model = rep(rep("Strat. Mean",length(list_all)),n_spp),
)
df_SRS <- rbind(as.data.frame(df_SRS_fall),as.data.frame(df_SRS_spring))
#create data frame containing mean values for each group
means_SRS <- ddply(df_SRS, .(species,season), summarise, mean = mean(as.numeric(unlist(error)),na.rm=T), Model = "Strat. Mean")
#2- VAST data
df_VAST_spring <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(VAST_error_spring[[1]], VAST_error_spring[[2]], VAST_error_spring[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("spring",length(list_all)),n_spp),
Model = rep(rep("VAST",length(list_all)),n_spp),
)
df_VAST_fall <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(VAST_error_fall[[1]], VAST_error_fall[[2]], VAST_error_fall[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("fall",length(list_all)),n_spp),
Model = rep(rep("VAST",length(list_all)),n_spp),
)
df_VAST <- rbind(df_VAST_fall,df_VAST_spring)
#create data frame containing mean values for each group
means_VAST <- ddply(df_VAST, .(species,season), summarise, mean = mean(as.numeric(unlist(error))), Model = "VAST")
#combine both of previous data into single object for plotting
df <- rbind(df_VAST,df_SRS)
means <- rbind(means_SRS,means_VAST)
#Error scatterplots
#1) to plot a single scenario, run just cc below and print(cc)
#2) to plot two scenarios on top of each other, store the first as cc and then run code below doing cc +
library(ggplot2)
# #SRS scatterplot alone
# SRS_scat <-ggplot(data=df_SRS,
# aes(x=iter,y=as.numeric(error),color=Model)) +
# geom_point()+
# ylim(0,1)+
# facet_grid(season ~ species)+
# geom_hline(aes(yintercept = mean, color = Model), data = means_SRS)
#
# print(SRS_scat)
#
# #VAST scatterplot alone
# VAST_scat <-ggplot(data=df_VAST,
# aes(x=iter,y=as.numeric(error),color=Model)) +
# geom_point()+
# ylim(0,1)+
# facet_grid(season ~ species)+
# geom_hline(aes(yintercept = mean, color = Model), data = means_VAST)
#
# print(VAST_scat)
#both scatterplots together
both_scat <-ggplot(data=df,
aes(x=iter,y=as.numeric(unlist(error)),color=Model)) +
geom_point()+
ylim(0,1)+
facet_grid(season ~ species)+
geom_hline(aes(yintercept = mean, color = Model), data = means)
print(both_scat)
#
# ggsave(filename = paste("Results/GB_error_plots/Individussssal_SRS_",scenario,".pdf",sep=""),
# plot = last_plot())
#
#run this second to plot on top of each other
cc+ geom_point(data=df,color="red",
aes(x=iter,y=as.numeric(error)))+
facet_grid(season ~ species) +
geom_hline(aes(yintercept = mean), data = means, color = "red")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.