#THIS SCRIPT IS A PIECE OF RUN_SURVEY_BENS_NEW WHERE THE STRATIFIED MEAN CALCULATION IS MADE
#THIS SCRIPT ALLOWS US TO CALULATE THE STRATIFIED MEAN FOR A SMALLER NUMER OF NOISELESS SURVEYS
#WILL ALSO CALCULATE THE VAST ESIMATE AS WELL
##################################################################################################
#THINGS WE NEED
##################################################################################################
scenario <- "ConPop_IncTemp"
n_spp <- 3
years_sim <- 22
years_cut <- 2
#survey results without noise
list_all <- readRDS(paste("E:\\READ-PDB-blevy2-MFS2\\GB_Results\\",scenario,"\\list_all_",scenario,".RDS",sep=""))
#simulation results
result <- readRDS(paste("E:\\READ-PDB-blevy2-MFS2\\GB_Results\\",scenario,"\\result_",scenario,".RDS",sep=""))
###############################
#LOAD JUST ONE OF THE FOLLOWING
#1- single set of random survey locations used in stratified mean analysis
surv_random <- readRDS(paste("E:\\READ-PDB-blevy2-MFS2\\GB_Results\\",scenario,"\\surv_random_",scenario,".RDS",sep=""))
#2- generate 100 different survey locations
#I have decided to sample the following amounts from each stratum PER SEASON
#"01130","01140","01150","01160","01170","01180","01190","01200","01210","01220","01230","01240","01250", "01290", "01300"
#THESE ARE PER SEASON. WILL BE TWICE AS MANY PER YEAR TOTAL
strata_samples <- c(10,4,3,14,4,4,8,6,4,4,6,7,3,10,3)
source("R/BENS_init_survey.R")
#load enviroment for given scenario
load(paste("E:/READ-PDB-blevy2-MFS2/GB_Results/",scenario,"/GB_3species_",scenario,"_environment.RData",sep=""))
#read in habitat matrix
hab <- readRDS(file="hab_GB_3species.RDS") #courser resolution
#to rotate matrix before fields::image.plot
rotate <- function(x) t(apply(x, 2, rev))
#CURRENTLY NEED TO MAKE SURE THAT N_STATIONS*#YEARS / #STRATA IS A WHOLE NUMBER OTHERWISE DAY, TOW, YEAR WONT LINEUP WITH NUMBER OF STATIONS
#ALSO NEED N_STATION TO BE DIVISIBLE BY STATIONS_PER_DAY
#ALSO NEED N_STATIONS / STATIONS_PER_DAY <= 52 otherwise wont get to all of them in a year results in NA in the matrix
surv_random <- list()
for(i in seq(100)){
print(i)
nstat <- 2*strata_samples #this is total samples per year per strata
surv_random[[i]] <- BENS_init_survey(sim_init = sim,design = 'random_station', n_stations = nstat,
start_day = 1, stations_per_day = 1, Qs = c("spp1" = 1, "spp2"= 1),
strata_coords = hab$strata, strata_num = hab$stratas,
years_cut = 2, #if running 22 years, remove first 2 years
suppress = TRUE
)
}
###############################
#spp1 spp2 spp3
short_names <- c("YT","Cod","Had")
#strata that each species occupies. Used to calculate stratified random mean of each
strata_species <- list()
strata_species[["YT"]] <- c(13,14,15,16,17,18,19,20,21)
strata_species[["Cod"]] <- c(13,14,15,16,17,18,19,20,21,22,23,24,25)
strata_species[["Had"]] <- c(13,14,15,16,17,18,19,20,21,22,23,24,25,29,30)
##################################################################################################
#ADD TRUE MODEL POPULATION VALUES TO SURVEY DATA TABLES
#ALSO ADD LAT LON LOCATIONS TO TABLE AS WELL
library(raster)
library(sp)
library(TMB)
library(VAST)
library(dplyr)
library(ggplot2)
#read in habitat matrix
hab <- readRDS(file="hab_GB_3species.RDS") #courser resolution
#read in GB strata
#haddock contains all stratas used
Had_ras <- readRDS(file="TestScripts/Habitat_plots/Haddock/Had_Weighted_AdaptFalse_RASTER_res2.RDS")
#plot(Had_ras)
#translate habitat matrix back into raster
hab_ras <-raster(hab$hab$spp3)
extent(hab_ras) <- extent(Had_ras)
#plot(hab_ras)
for(iter in seq(length(list_all))){
print(iter)
temp <- matrix(data=0,nrow=length(list_all[[iter]][,1]),ncol=n_spp)
lat <- vector()
lon <- vector()
for(samp in seq(length(list_all[[iter]][,1]))){
#ADDING TRUE POPULATION
x = as.numeric(list_all[[iter]][samp,2]) #x in second column
y = as.numeric(list_all[[iter]][samp,3]) #y in third column
wk = as.numeric(list_all[[iter]][samp,11]) #week in 11th column
yr = as.numeric(list_all[[iter]][samp,7]) #year in 7th column
temp[samp,1] <- sum(result[[iter]]$pop_bios[[(wk+(52*(yr-1)))]][["spp1"]],na.rm=T) #YT is spp1
temp[samp,2] <- sum(result[[iter]]$pop_bios[[(wk+(52*(yr-1)))]][["spp2"]],na.rm=T) #Cod is spp2
temp[samp,3] <- sum(result[[iter]]$pop_bios[[(wk+(52*(yr-1)))]][["spp3"]],na.rm=T) #Had is spp3
#ADDING LAT LON LOCATIONS
rw <- as.numeric(list_all[[iter]][samp,"x"]) #x in col 2
cl <- as.numeric(list_all[[iter]][samp,"y"]) #y in col 3
lon[samp] <- xFromCol(hab_ras, col = cl)
lat[samp] <- yFromRow(hab_ras, row = rw)
}
temp <- cbind(temp,lat,lon)
colnames(temp) <- c("YT","Cod","Had","Latitude","Longitude")
list_all[[iter]] <- cbind(list_all[[iter]],temp)
colnames(list_all[[iter]]) <- c("station_no","x","y","stratum","day","tow","year","YT_samp","Cod_samp","Had_samp","week","Season","YT_pop","Cod_pop","Had_pop","Lat","Lon")
}
#SAVE INDIVIDUAL LIST_ALL AS THEY COME OUT SO DONT HAVE TO REDO THEM
saveRDS(list_all,paste("list_all_more_",scenario,".RDS",sep=""))
#FIND MEAN VALUE BY SEASON USING ABOVE INFORMATION. USE MEAN OF TWO SURVEY WEEKS FOR EACH SEASON
season_wks <- list(c(13,14),c(37,38))
pop_by_season <- list()
for(iter in seq(length(list_all))){
for(s in short_names){
temp <- data.frame()
idx <- 1
for(yr in seq(3,22)){
for(season in seq(2)){
temp[idx,1] <- yr
temp[idx,2] <- season
#use values in given year for weeks in specified season. only use single strata because entire population summarized in each strata in above loop
temp[idx,3] <- mean(as.numeric(list_all[[iter]][((as.numeric(list_all[[iter]][,"year"]==yr)) & (as.numeric(list_all[[iter]][,"week"]) %in% season_wks[[season]]) & (as.numeric(list_all[[iter]][,"stratum"]==29)) ),paste(s,"_pop",sep="")]))
idx <- idx + 1
}
}
colnames(temp) <- c("year","season","biomass")
pop_by_season[[s]][[iter]] <- temp
}
}
##########################################################################################
#NOW WE NEED TO CREATE A STRATIFIED MEAN FROM EACH OF THESE SAMPLES
##########################################################################################
#BELOW WILL TAKE A MINUTE
#choose some strata to exclude, if desired
#George's Bank Setup by species
#YT Cod Haddock
exclude <- list(c(13,14,15,17,18), c(23,24,25), c(23,24,25,29,30))
#exclude none
exclude <- list(c(0),c(0),c(0)) #3 species
#there are #strata * #iterations * #samp_per_iter total samples
#I AM COPYING FROM CALC_SRS_INDEX_SURVEY_BENS, which was adapted from Liz's code to create below
library(tibble)
library(ggplot2)
library(plyr)
library(dplyr)
library(tidyr)
library(readr)
library(here)
#stop output from below using this option
options(dplyr.summarise.inform = FALSE)
#load file to calculate the stratified mean
source("TestScripts/Calc_strat_mean/fn_srs_survey_BENS.R")
#setup dimensions for each species- 1 for each strata
strat_mean_all <- vector("list",length(seq(n_spp)))
for(s in seq(n_spp)){
strat_mean_all[[s]] <- vector("list",length(list_all))
}
#go through each strata survey, iteration, sample
for(iter in seq(length(list_all))){
print(iter)
#if any NA columns make them zero
list_all[[iter]][is.na(list_all[[iter]])]=0
# calculate SRS estimates ====
for(s in seq(n_spp)){
#DEFINE INDIVIDUAL STRATUM AREAS
stratum <- sort(unique(surv_random$log.mat[,4]))
STRATUM_AREA <- na.omit(surv_random$cells_per_strata) # old way: rep(10000/nstrata,nstrata) #100x100 grid so each corner has area 2500
sv.area <- as_tibble(data.frame(stratum,STRATUM_AREA))
#remove stratum that species does not occupy
sv.area <- sv.area[(sv.area$stratum %in% strata_species[[short_names[s]]]),]#sv.area %>% slice(-exclude)
#remove strata to exclude from stratified mean calculation
sv.area <- sv.area[!(sv.area$stratum %in% exclude[[s]]),]#sv.area %>% slice(-exclude)
spp <- as_tibble(list_all[[iter]],header=T) #pull out entire survey matrix
##remove strata to exclude from stratified mean calculation
spp <- spp[(spp$stratum %in% strata_species[[short_names[s]]]),]
spp <- spp[!(spp$stratum %in% exclude[[s]]),]
spp$year <- as.numeric(spp$year)
# get total area of stock ====
spp.strata <- unique(spp$stratum)
spp.strata <- as.numeric(spp.strata)
spp.area <- sum(sv.area$STRATUM_AREA[sv.area$stratum %in% spp.strata]) #TOTAL AREA OF ALL STRATA
temp <- srs_survey(df=spp, sa=sv.area, str=NULL, ta=1, sppname = paste0(short_names[s],"_samp", sep="") ) # if strata=NULL, the function will use the unique strata set found in df
# View(temp)
strat_mean_all[[s]][[iter]] <- temp %>%
mutate(mean.yr.absolute=mean.yr*spp.area, sd.mean.yr.absolute=sd.mean.yr*spp.area,
CV.absolute=sd.mean.yr.absolute/mean.yr.absolute) # if strata=NULL, the function will use the unique strata set found in df
strat_mean_all[[s]][[iter]] <- data.matrix(strat_mean_all[[s]][[iter]])
}
colnames(strat_mean_all[[s]][[iter]]) <- c("year","mean.yr","var.mean.yr","sd.mean.yr","CV","season","mean.yr.absolute","sd.mean.yr.absolute","CV.absolute")
}
#initial scenario folder
dir.create( paste0(getwd(),"/VAST/",scenario)) #create folder to store upcoming subfolders
names(strat_mean_all) <- short_names
saveRDS(strat_mean_all,paste0(getwd(),"/VAST/",scenario,"/strat_mean_all_",scenario,".RDS"))
##########################################################################################
#Next create VAST estimates of the survey output
##########################################################################################
#FIGURE OUT HOW BIG EACH CELL OF RASTER IS IN KM^2 TO SET AREASWEPT_KM2 SETTING BELOW
#read in habitat matrix
hab <- readRDS(file="hab_GB_3species.RDS") #courser resolution
#read in GB strata
library(raster)
library(sp)
#haddock contains all and wa sused
Had_ras <- readRDS(file="TestScripts/Habitat_plots/Haddock/Had_Weighted_AdaptFalse_RASTER_res2.RDS")
plot(Had_ras)
#translate habitat matrix back into raster
hab_ras <-raster(hab$hab$spp3)
extent(hab_ras) <- extent(Had_ras)
plot(hab_ras)
#check range and mean value of cells
#range(cell_size)
#mean(cell_size)#get sizes of all cells in raster [km2]
cell_size<-raster::area(hab_ras, na.rm=TRUE, weights=FALSE)
#delete NAs from vector of all raster cells
##NAs lie outside of the rastered region, can thus be omitted
cell_size<-cell_size[!is.na(cell_size)]
cell_sz <- mean(cell_size)
VAST_fit_spring <- list() #all model fit info
VAST_fit_fall <- list()
#original project directory so we can switch back to it
orig.dir <- getwd()
#individual strata limits
strata.limits <- list()
strata.limits[["YT"]] <- data.frame(Georges_Bank = c(1130, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210)) #THESE ARE YTF STRATA
strata.limits[["Cod"]] <- data.frame(Georges_Bank = c(1130, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220, 1230, 1240, 1250)) #THESE ARE COD STRATA
strata.limits[["Had"]] <- data.frame(Georges_Bank = c(1130, 1140, 1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220, 1230, 1240, 1250, 1290, 1300)) #THESE ARE HAD STRATA
#initial scenario folder
dir.create( paste0(getwd(),"/VAST/",scenario)) #create folder to store upcoming subfolders
library(dplyr)
#YT Cod Haddock
exclude <- list(c(13,14,15,17,18), c(23,24,25), c(23,24,25,29,30))
#exclude none
exclude <- list(c(0),c(0),c(0)) #3 species
for(iter in 56){
#pull out survey
surv_random_VAST <- list_all[[iter]]
names(exclude) <- c("YT","Cod","Had")
for(s in short_names){
setwd(orig.dir)
#create directories first time through
if(iter == 1){
dir.create( paste0(getwd(),"/VAST/",scenario,"/",s)) #create species directory
dir.create( paste0(getwd(),"/VAST/",scenario,"/",s,"/spring")) #create spring directory
dir.create( paste0(getwd(),"/VAST/",scenario,"/",s,"/fall")) #create fall directory
}
#following from Chris' file...
adios <- as.data.frame(surv_random_VAST)
#delete values outside of populations region and those being excluded
adios <- adios[(adios$stratum %in% strata_species[[s]]),]
adios <- adios[!(adios$stratum %in% exclude[[s]]),]
#head(adios)
#PULLING OUT YELLOTWTAIL FLOUNDER IN THIS SCRIPT
# format for use in VAST
spring <- adios %>%
filter(Season == "SPRING") %>%
# filter(YEAR >= 2009) %>%
# mutate(mycatch = paste0(s,"_samp",sep="")) %>% #OLD WAY DIDNT WORK
tidyr::unite("mycatch", paste0(s,"","_samp"),remove=F) %>% #NEW WAY
dplyr::select(Year = year,
Catch_KG = mycatch,
Lat = Lat,
Lon = Lon) %>%
mutate(Vessel = "missing",
AreaSwept_km2 = cell_sz) #CORRECT AREA SWEPT?
fall <- adios %>%
filter(Season == "FALL") %>%
# filter(YEAR >= 2009) %>%
# mutate(mycatch = paste0(s,"_samp",sep="")) %>% #OLD WAY DIDNT WORK
tidyr::unite("mycatch", paste0(s,"","_samp"),remove=F) %>% #NEW WAY
dplyr::select(Year = year,
Catch_KG = mycatch,
Lat = Lat,
Lon = Lon) %>%
mutate(Vessel = "missing",
AreaSwept_km2 = cell_sz) #CORRECT AREA SWEPT?
#summary(spring)
#names(spring)
# reorder the data for use in VAST
#DOESNT SEEM TO BE USED BELOW...??
# nrows <- length(spring[,1])
# reorder <- sample(1:nrows, nrows, replace = FALSE)
# spring_reorder <- spring
# spring_reorder[1:nrows, ] <- spring[reorder, ]
# head(spring)
# head(spring_reorder)
# model with original data and default settings (Poisson link)
example <- list(spring)
example$Region <- "northwest_atlantic"
example$strata.limits <- strata.limits[[s]]
#WHEN ADDING ADDITIONAL FIELDCONFIG SETTINGS ALL 4 SETTINGS BELOW MUST BE INCLUDED
if(s == "YT"){
#first attempt at settings. failed on ConPop_IncTemp exclude strata interation #56 fall
# settings <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
# Region=example$Region,
# purpose="index2",
# strata.limits=example$strata.limits,
# bias.correct=TRUE,
# FieldConfig= c("Omega1"=0, "Epsilon1"=0, "Omega2"=0, "Epsilon2"=0))
#second attempt which fixes the previous fail
settings <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
Region=example$Region,
purpose="index2",
strata.limits=example$strata.limits,
bias.correct=TRUE,
FieldConfig= c("Omega1"=0, "Epsilon1"=0, "Omega2"=0, "Epsilon2"=0),
RhoConfig = c("Beta1" = 0, "Beta2" = 3, "Epsilon1" = 0, "Epsilon2" = 0))
#' Specification of \code{FieldConfig} can be seen by calling \code{\link[FishStatsUtils]{make_settings}},
#' which is the recommended way of generating this input for beginning users.
#dafault FieldConfig settings:
# if(missing(FieldConfig)) FieldConfig = c("Omega1"=0, "Epsilon1"=n_categories, "Omega2"=0, "Epsilon2"=0)
#settings
}
if(s == "Cod"){
settings <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
Region=example$Region,
purpose="index2",
strata.limits=example$strata.limits,
bias.correct=TRUE,
FieldConfig= c("Omega1"=1, "Epsilon1"=0, "Omega2"=1, "Epsilon2"=0))
}
if(s == "Had"){
settings <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
Region=example$Region,
purpose="index2",
strata.limits=example$strata.limits,
bias.correct=TRUE,
FieldConfig= c("Omega1"=1, "Epsilon1"=0, "Omega2"=1, "Epsilon2"=0))
}
setwd(paste0(getwd(),"/VAST/",scenario,"/",s))
#SPRING FIT
VAST_fit_spring[[s]][[iter]] <- fit_model(settings = settings,
"Lat_i"=as.numeric(spring[,'Lat']),
"Lon_i"=as.numeric(spring[,'Lon']),
"t_i"=as.numeric(spring[,'Year']),
"c_i"=as.numeric(rep(0,nrow(spring))),
"b_i"=as.numeric(spring[,'Catch_KG']),
"a_i"=as.numeric(spring[,'AreaSwept_km2']),
"v_i"=spring[,'Vessel'])
#1- THIS PART SAVES CSV AND PNG FOR THE INDEX VALUE
dir.create( paste0(getwd(),"/spring/iter",iter,sep=""))
setwd(paste0(getwd(),"/spring/iter",iter))
plot_biomass_index(VAST_fit_spring[[s]][[iter]])
#copy parameter files into iteration folder
file.rename(from= paste(orig.dir,"/VAST/",scenario,"/",s,"/parameter_estimates.txt",sep="")
,to =paste(orig.dir,"/VAST/",scenario,"/",s,"/spring/iter",iter,"/parameter_estimates.txt",sep=""))
file.rename(from= paste(orig.dir,"/VAST/",scenario,"/",s,"/parameter_estimates.RData",sep="")
,to =paste(orig.dir,"/VAST/",scenario,"/",s,"/spring/iter",iter,"/parameter_estimates.RDATA",sep=""))
#DECIDED NOT TO CALCULATE VALUES DIRECTLY BELOW BECAUSE NOT CONFIDENT OUTPUT WOULD BE SAME
#
# #2- THIS PART CALCULATES AND EXTRACTS THE VAST POPULATION ESTIMATE AND STD ERROR FOR PLOTTING LATER
# #FOLLOW FROM plot_biomass_index.R SOURCE CODE
# par_SE_sp = TMB:::as.list.sdreport( VAST_fit_spring[[iter]]$parameter_estimates$SD, what="Std. Error", report=TRUE )
# par_hat_sp = TMB:::as.list.sdreport( VAST_fit_spring[[iter]]$parameter_estimates$SD, what="Estimate", report=TRUE )
setwd(paste(orig.dir,"/VAST/",scenario,"/",s,sep=""))
example <- list(fall)
example$Region <- "northwest_atlantic"
example$strata.limits <- strata.limits[[s]]
#WHEN ADDING ADDITIONAL FIELDCONFIG SETTINGS ALL 4 SETTINGS BELOW MUST BE INCLUDED
if(s == "YT"){
#first attempt at settings. failed on ConPop_IncTemp exclude strata interation #56 fall
# settings <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
# Region=example$Region,
# purpose="index2",
# strata.limits=example$strata.limits,
# bias.correct=TRUE,
# FieldConfig= c("Omega1"=0, "Epsilon1"=0, "Omega2"=0, "Epsilon2"=0))
#second attempt which fixes the previous fail
settings_species[["YT"]] <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
Region=example$Region,
purpose="index2",
strata.limits=example$strata.limits,
bias.correct=TRUE,
FieldConfig= c("Omega1"=0, "Epsilon1"=0, "Omega2"=0, "Epsilon2"=0),
RhoConfig = c("Beta1" = 0, "Beta2" = 3, "Epsilon1" = 0, "Epsilon2" = 0))
#' Specification of \code{FieldConfig} can be seen by calling \code{\link[FishStatsUtils]{make_settings}},
#' which is the recommended way of generating this input for beginning users.
#dafault FieldConfig settings:
# if(missing(FieldConfig)) FieldConfig = c("Omega1"=0, "Epsilon1"=n_categories, "Omega2"=0, "Epsilon2"=0)
#settings
}
if(s == "Cod"){
settings <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
Region=example$Region,
purpose="index2",
strata.limits=example$strata.limits,
bias.correct=TRUE,
FieldConfig= c("Omega1"=1, "Epsilon1"=0, "Omega2"=1, "Epsilon2"=0))
}
if(s == "Had"){
settings <- make_settings(n_x = 1000, #NEED ENOUGH KNOTS OR WILL HAVE ISSUES WITH PARAMETER FITTING
Region=example$Region,
purpose="index2",
strata.limits=example$strata.limits,
bias.correct=TRUE,
FieldConfig= c("Omega1"=1, "Epsilon1"=0, "Omega2"=1, "Epsilon2"=0))
}
#FALL FIT
VAST_fit_fall[[s]][[iter]] <- fit_model(settings = settings,
"Lat_i"=as.numeric(fall[,'Lat']),
"Lon_i"=as.numeric(fall[,'Lon']),
"t_i"=as.numeric(fall[,'Year']),
"c_i"=as.numeric(rep(0,nrow(fall))),
"b_i"=as.numeric(fall[,'Catch_KG']),
"a_i"=as.numeric(fall[,'AreaSwept_km2']),
"v_i"=fall[,'Vessel'])
dir.create( paste0(getwd(),"/fall/iter",iter,sep=""))
setwd(paste0(getwd(),"/fall/iter",iter))
plot_biomass_index(VAST_fit_fall[[s]][[iter]])
#copy parameter files into iteration folder
file.rename(from= paste(orig.dir,"/VAST/",scenario,"/",s,"/parameter_estimates.txt",sep="")
,to =paste(orig.dir,"/VAST/",scenario,"/",s,"/fall/iter",iter,"/parameter_estimates.txt",sep=""))
file.rename(from= paste(orig.dir,"/VAST/",scenario,"/",s,"/parameter_estimates.RData",sep="")
,to =paste(orig.dir,"/VAST/",scenario,"/",s,"/fall/iter",iter,"/parameter_estimates.RDATA",sep=""))
}
}
#reset working directory
setwd(orig.dir)
#save all individual fits
VAST_fit_all <- list(VAST_fit_spring,VAST_fit_fall)
names(VAST_fit_all) <- c("spring","fall")
saveRDS(VAST_fit_all,paste0(getwd(),"/VAST/",scenario,"_excludestrata_IndParams","/VAST_fit_all_",scenario,".RDS"))
#
#
# ##########################################################################################
# # Preparing things to plot
# ##########################################################################################
#
#
# #copying plot_pop_summary to summarize yearly population estimates
# #assumes we have summarized version of simulations called res
# results_df <- list()
#
# for(iter in seq(length(list_all))){
#
# res <- result[[iter]]
#
# n_spp <- length(res[["pop_summary"]])
# res_df <- lapply(seq_len(n_spp), function(x) {
# res_spp <- lapply(names(res[["pop_summary"]][[x]]), function(x1) {
# x1_res <- tidyr::gather(as.data.frame(t(res[["pop_summary"]][[x]][[x1]])), key = "year", factor_key = T)
# if(x1 == "Bio.mat" | x1 == "Bio.mat.sd") { res_out <- data.frame("pop" = rep(short_names[[x]], length.out = nrow(x1_res)),
# "metric" = x1,
# "year" = as.numeric(x1_res$year),
# "day" = rep(1:358, length.out = nrow(x1_res)),#changed 362 to 358
# "julien_day" = seq_len(nrow(x1_res)),
# "data" = x1_res$value)
#
# return(res_out)
#
# }
# if(x1 == "Rec.mat" | x1 == "Rec.mat.sd") { res_out <- data.frame("pop" = rep(short_names[[x]], length.out = nrow(x1_res)),
# "metric" = x1 ,
# "year" = as.numeric(seq_len(nrow(x1_res))),
# "day" = rep(1, length.out = nrow(x1_res)),
# "julien_day" = rep(1, length.out = nrow(x1_res)),
# "data" = x1_res$value)
#
# return(res_out)
#
# }
#
# })
# return(do.call(rbind, res_spp))
# })
#
# results_df[[iter]] <- do.call(rbind, res_df)
#
# }
#
#
#
#
#
# # #ANNUAL POP BY SPECIES
#
# annual_species <- list()
#
# for(iter in seq(length(list_all))){
#
# for(s in seq(length(short_names))){
# annual_species[[short_names[s]]][[iter]] <- results_df[[iter]] %>% filter(metric == "Bio.mat", day == 1, pop == short_names[s]) %>%
# group_by(pop,year) %>% summarise(data = sum(data))
#
# }
# }
##########################################################################################
#Next measure error between estimates and true values and plot estimates
##########################################################################################
pdf(file=paste("Results/GB_error_plots/Individual_SRS_",scenario,".pdf",sep=""))
nyears <- 20
#for error calculation
SRS_error_spring <- list()
SRS_error_fall <- list()
model <- list()
SRS_spring <- list()
SRS_fall <- list()
VAST_error_spring <- list()
VAST_error_fall <- list()
VAST_spring <- list()
VAST_fall <- list()
vast.dir <- paste("VAST/",scenario,sep="")
#plot stratified calculation and population estimate on same plot
#first make model output have 2 seasons to match the stratified mean calcs
for(iter in seq(length(list_all))){
print(iter)
# for(s in seq(length(annual_species))){
# annual_species[[short_names[s]]][[iter]] <- rbind(annual_species[[short_names[s]]][[iter]][3:22,],annual_species[[short_names[s]]][[iter]][3:22,])
# annual_species[[short_names[s]]][[iter]]$season <- c(rep(1,nyears),rep(2,nyears)) #spring = season 1, fall = season 2
# annual_species[[short_names[s]]][[iter]]$year <- as.numeric(rep(seq(3,22),2))
# }
SRS_data <- list()
VAST_data <- list()
for(s in short_names){
#pull out strat mean calc
SRS_data[[s]] <- strat_mean_all[[s]][[iter]]
#MODEL VALUES
model_spring = pop_by_season[[s]][[iter]][pop_by_season[[s]][[iter]]$season==1,"biomass"]
model_fall = pop_by_season[[s]][[iter]][pop_by_season[[s]][[iter]]$season==2,"biomass"]
#SRS VALUES
#SRS spring estimate
SRS_spring[[s]][[iter]] <- strat_mean_all[[s]][[iter]][strat_mean_all[[s]][[iter]][,"season"]==1,"mean.yr.absolute"]
#SRS fall estimate
SRS_fall[[s]][[iter]] <- strat_mean_all[[s]][[iter]][strat_mean_all[[s]][[iter]][,"season"]==2,"mean.yr.absolute"]
#calculate SPRING SRS error from each iteration
SRS_error_spring[[s]][[iter]] <- norm(model_spring- SRS_spring[[s]][[iter]] , type="2") / norm(model_spring , type ="2")
#calculate FALL SRS error from each iteration
SRS_error_fall[[s]][[iter]] <- norm(model_fall - SRS_fall[[s]][[iter]] , type="2") / norm(model_fall , type ="2")
#VAST VALUES
#read in csv for estimate
Vast_sp_est <- read.csv(paste0(getwd(),"/VAST/",scenario,"/",s,"/spring/iter",iter,"/Index.csv"), header=T)
Vast_fa_est <- read.csv(paste0(getwd(),"/VAST/",scenario,"/",s,"/fall/iter",iter,"/Index.csv"), header=T)
#add year & season to these
Year <- seq(years_cut+1,years_sim)
season <- rep(1,years_sim-years_cut)
Vast_sp_est <- cbind(Vast_sp_est,Year,season)
season <- rep(2,years_sim-years_cut)
Vast_fa_est <- cbind(Vast_fa_est,Year,season)
#VAST spring estimate
VAST_spring[[s]][[iter]] <- Vast_sp_est[,"Estimate"]
#VAST fall estimate
VAST_fall[[s]][[iter]] <- Vast_fa_est[,"Estimate"]
#calculate SPRING VAST error from each iteration
VAST_error_spring[[s]][[iter]] <- norm(model_spring- VAST_spring[[s]][[iter]] , type="2") / norm(model_spring , type ="2")
#calculate FALL VAST error from each iteration
VAST_error_fall[[s]][[iter]] <- norm(model_fall - VAST_fall[[s]][[iter]] , type="2") / norm(model_fall , type ="2")
#store VAST stuff to plot later
VAST_data[[s]] <- rbind(Vast_sp_est,Vast_fa_est)
}
long_names <- c("Yellowtail Flounder","Cod","Haddock")
#par(mfrow = c(1,3), mar = c(1, 1, 1, 1))
#for(s in short_names){
#
# #OLD WAY
# #initiate ggplot
# p<- ggplot() +
# #plot stratified calculation data
# geom_errorbar(data=as.data.frame(SRS_data[[s]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean"),width=.3) +
# geom_point(data=as.data.frame(SRS_data[[s]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
# geom_line(data=as.data.frame(SRS_data[[s]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
# #plot model data
# geom_point(data = as.data.frame(annual_species[[s]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
# geom_line(data = as.data.frame(annual_species[[s]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
#
# facet_wrap(~ season) +
# labs(x="year",y="Biomass", title = long_names[idx], color ="" )
# idx<-idx+1
#
# print(p)
#}
#NEW WAY PLOTTING 3 TOGETHER ON SAME PAGE
#YTF
p1<- ggplot() +
#this way plots data by season
geom_point(data = as.data.frame(pop_by_season[[1]][[iter]]), aes(x=as.numeric(year),y=biomass, group = season, color = "Model"),size=2) +
geom_line(data = as.data.frame(pop_by_season[[1]][[iter]]), aes(x=as.numeric(year),y=biomass, group =season, color = "Model"),size=1) +
#plot stratified calculation data
geom_errorbar(data=as.data.frame(SRS_data[[1]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean"),width=.3) +
geom_point(data=as.data.frame(SRS_data[[1]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
geom_line(data=as.data.frame(SRS_data[[1]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
#plot model data
#this way plots annual data
#geom_point(data = as.data.frame(annual_species[[1]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
#geom_line(data = as.data.frame(annual_species[[1]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
#plot VAST estimate
geom_errorbar(data=VAST_data[[1]],aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST Estimate"),width=.3) +
geom_point(data=VAST_data[[1]],aes(x=Year,y=Estimate,group=season, color = "VAST Estimate"))+
geom_line(data=VAST_data[[1]],aes(x=Year,y=Estimate,group=season, color = "VAST Estimate"))+
facet_wrap(~ season) +
labs(x="year",y="Biomass", title = long_names[1], color ="" )
#COD
p2<- ggplot() +
#this way plots data by season
geom_point(data = as.data.frame(pop_by_season[[2]][[iter]]), aes(x=as.numeric(year),y=biomass, group = season, color = "Model"),size=2) +
geom_line(data = as.data.frame(pop_by_season[[2]][[iter]]), aes(x=as.numeric(year),y=biomass, group =season, color = "Model"),size=1) +
#plot stratified calculation data
geom_errorbar(data=as.data.frame(SRS_data[[2]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean"),width=.3) +
geom_point(data=as.data.frame(SRS_data[[2]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
geom_line(data=as.data.frame(SRS_data[[2]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
#plot model data
#this way plots annual data
#geom_point(data = as.data.frame(annual_species[[2]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
#geom_line(data = as.data.frame(annual_species[[2]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
#plot VAST estimate
geom_errorbar(data=VAST_data[[2]],aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST Estimate"),width=.3) +
geom_point(data=VAST_data[[2]],aes(x=Year,y=Estimate,group=season, color = "VAST Estimate"))+
geom_line(data=VAST_data[[2]],aes(x=Year,y=Estimate,group=season, color = "VAST Estimate"))+
facet_wrap(~ season) +
labs(x="year",y="Biomass", title = long_names[2], color ="" )
#HAD
p3<- ggplot() +
#this way plots data by season
geom_point(data = as.data.frame(pop_by_season[[3]][[iter]]), aes(x=as.numeric(year),y=biomass, group = season, color = "Model"),size=2) +
geom_line(data = as.data.frame(pop_by_season[[3]][[iter]]), aes(x=as.numeric(year),y=biomass, group =season, color = "Model"),size=1) +
#plot stratified calculation data
geom_errorbar(data=as.data.frame(SRS_data[[3]]),aes(x=year,y=mean.yr.absolute,group=season,ymin=mean.yr.absolute-(1.96*sd.mean.yr.absolute), ymax=mean.yr.absolute+(1.96*sd.mean.yr.absolute), color = "Stratified Mean"),width=.3) +
geom_point(data=as.data.frame(SRS_data[[3]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
geom_line(data=as.data.frame(SRS_data[[3]]),aes(x=year,y=mean.yr.absolute,group=season, color = "Stratified Mean"))+
#plot model data
#this way plots annual data
#geom_point(data = as.data.frame(annual_species[[3]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
#geom_line(data = as.data.frame(annual_species[[3]][[iter]]), aes(x=as.numeric(year),y=data, group =season, color = "Model")) +
#plot VAST estimate
geom_errorbar(data=VAST_data[[3]],aes(x=Year,y=Estimate,group=season,ymin=Estimate-(1.96*Std..Error.for.Estimate), ymax=Estimate+(1.96*Std..Error.for.Estimate), color = "VAST Estimate"),width=.3) +
geom_point(data=VAST_data[[3]],aes(x=Year,y=Estimate,group=season, color = "VAST Estimate"))+
geom_line(data=VAST_data[[3]],aes(x=Year,y=Estimate,group=season, color = "VAST Estimate"))+
facet_wrap(~ season) +
labs(x="year",y="Biomass", title = long_names[3], color ="" )
gridExtra::grid.arrange(p1,p2,p3,nrow=3)
}
dev.off()
##########################################################################################
#Next plot scatterplot of errors
##########################################################################################
#first create data from for each
#1- stratified mean data
df_SRS_spring <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(SRS_error_spring[[1]], SRS_error_spring[[2]], SRS_error_spring[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("spring",length(list_all)),n_spp),
Model = rep(rep("Strat. Mean",length(list_all)),n_spp),
)
df_SRS_fall <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(SRS_error_fall[[1]], SRS_error_fall[[2]], SRS_error_fall[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("fall",length(list_all)),n_spp),
Model = rep(rep("Strat. Mean",length(list_all)),n_spp),
)
df_SRS <- rbind(as.data.frame(df_SRS_fall),as.data.frame(df_SRS_spring))
#create data frame containing mean values for each group
means_SRS <- ddply(df_SRS, .(species,season), summarise, mean = mean(as.numeric(unlist(error)),na.rm=T), Model = "Strat. Mean")
#2- VAST data
df_VAST_spring <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(VAST_error_spring[[1]], VAST_error_spring[[2]], VAST_error_spring[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("spring",length(list_all)),n_spp),
Model = rep(rep("VAST",length(list_all)),n_spp),
)
df_VAST_fall <- tibble(iter = rep(1:length(list_all),n_spp),
error = c(VAST_error_fall[[1]], VAST_error_fall[[2]], VAST_error_fall[[3]]),
species = c(rep("YTF",length(list_all)),rep("Cod",length(list_all)),rep("Had",length(list_all))),
season = rep(rep("fall",length(list_all)),n_spp),
Model = rep(rep("VAST",length(list_all)),n_spp),
)
df_VAST <- rbind(df_VAST_fall,df_VAST_spring)
#create data frame containing mean values for each group
means_VAST <- ddply(df_VAST, .(species,season), summarise, mean = mean(as.numeric(unlist(error))), Model = "VAST")
#combine both of previous data into single object for plotting
df <- rbind(df_VAST,df_SRS)
means <- rbind(means_SRS,means_VAST)
#Error scatterplots
#1) to plot a single scenario, run just cc below and print(cc)
#2) to plot two scenarios on top of each other, store the first as cc and then run code below doing cc +
library(ggplot2)
# #SRS scatterplot alone
# SRS_scat <-ggplot(data=df_SRS,
# aes(x=iter,y=as.numeric(error),color=Model)) +
# geom_point()+
# ylim(0,1)+
# facet_grid(season ~ species)+
# geom_hline(aes(yintercept = mean, color = Model), data = means_SRS)
#
# print(SRS_scat)
#
# #VAST scatterplot alone
# VAST_scat <-ggplot(data=df_VAST,
# aes(x=iter,y=as.numeric(error),color=Model)) +
# geom_point()+
# ylim(0,1)+
# facet_grid(season ~ species)+
# geom_hline(aes(yintercept = mean, color = Model), data = means_VAST)
#
# print(VAST_scat)
#both scatterplots together
both_scat <-ggplot(data=df,
aes(x=iter,y=as.numeric(unlist(error)),color=Model)) +
geom_point()+
ylim(0,1)+
facet_grid(season ~ species)+
geom_hline(aes(yintercept = mean, color = Model), data = means)
print(both_scat)
#
# ggsave(filename = paste("Results/GB_error_plots/Individussssal_SRS_",scenario,".pdf",sep=""),
# plot = last_plot())
#
#run this second to plot on top of each other
cc+ geom_point(data=df,color="red",
aes(x=iter,y=as.numeric(error)))+
facet_grid(season ~ species) +
geom_hline(aes(yintercept = mean), data = means, color = "red")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.