# 6.25.21:
# Conditional Model
# How does it handle drop-out?
rm(list = ls())
gc()
library(SPR)
library(ordinal)
library(emmeans)
# Initialize output:
score.names <- c('Y_comp', 'Y_mcar', 'Y_mar', 'Y_mnar')
out <- data.frame('Param_type' = NA,
'Data' = NA,
'Estimate' = NA,
'Gen_param' = NA)
number.repl <- 100
#--------------------------
st <- Sys.time()
for (repl in 1:number.repl) {
set.seed(6252021 + repl)
sim.out <- SPR::sim_dat_ord_logistic_conditional(
N = 300,
number.groups = 2 ,
number.timepoints = 4,
reg.formula = formula( ~ Time + Group + Time*Group),
Beta = 1,
thresholds = c(-2, 0, 2),
subject.var = 2,
cond.mcar = F,
Covariate = F)
dat <- sim.out$dat
dat <- SPR::dropout(dat = dat,
type_dropout = c('mcar', 'mar', 'mnar'),
prop.miss = 0.3)
aggregate(Y_mar ~ Time, FUN = function(x) sum(!is.na(x)),
na.action = na.pass, data = dat)
for (score in score.names) {
# formula:
mf <- as.formula(paste0('ordered(', score,') ~ Group + Time + Group*Time + (1|USUBJID)'))
# CLMM - Random Effect
mod.clmm <- ordinal::clmm(mf, nAGQ = 5, data= dat)
tmp <- data.frame(
'Param_type' = names(coef(mod.clmm)),
'Data' = score,
'Estimate' = coef(mod.clmm),
'Gen_param' = c(sim.out$thresholds, as.vector(sim.out$Beta)[-1]))
# drop the intercept from Beta!
out <- rbind.data.frame(out, tmp)
# Marginal Means
emm.clmm <-
suppressMessages(
emmeans::emmeans(mod.clmm, pairwise ~ Group | Time)
)
emm <- as.data.frame(emm.clmm$contrasts)
# Output
tmp <- data.frame(
'Param_type' = paste0('emm_', emm$Time),
'Data' = score,
'Estimate' = emm$estimate,
'Gen_param' = as.vector(-1*sim.out$Beta[5:8,]))
out <- rbind.data.frame(out, tmp)
}# score loop
cat(paste0('Replication: ', repl, '\n'))
}# end replications
# Runtime:
et <- Sys.time()
et - st
#---------------------------------------------------------------
# Data Mgmt
out$Data <- ifelse(out$Data == 'Y_comp', 'Complete',
ifelse(out$Data == 'Y_mcar', 'MCAR',
ifelse(out$Data == 'Y_mar', 'MAR',
ifelse(out$Data == 'Y_mnar', 'MNAR', NA))))
out$Data <- factor(out$Data, levels = c('Complete', 'MCAR', 'MAR', 'MNAR'))
#-------------------------------------------------------------
# Output
tab.out <- aggregate(
cbind(Estimate,'Bias' = Estimate - Gen_param) ~ Data + Param_type,
FUN = function(x) mean(x, na.rm = T),
na.action = na.pass,
data = out)
tab.out
tab.out[tab.out$Param_type == 'emm_Time_4', ]
tab.out[tab.out$Param_type == 'GroupGroup_2:TimeTime_4', ]
# g2g
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.