# LogNormal Regression
# Works, g2g
# Same as "Normal_Reg_v1" but with a log transformation
# Not super interesting
# 2.19.21
rm(list = ls())
gc()
library(MASS)
N = 100 #this should be divisible by however many groups you use!
number.groups <- 2
number.timepoints <- 1
#set.seed(2182021)
dat <- data.frame(
'USUBJID' = rep(paste0('Subject_', formatC(1:N, width = 4, flag = '0')), length.out= N*number.timepoints),
'Group' = rep(paste0('Group_', 1:number.groups), length.out = N*number.timepoints),
'Y_comp' = rep(NA, N*number.timepoints),
#'Bio' = rep(rnorm(N, mean = 0, sd = 1), number.timepoints),
'Time' = rep(paste0('Time_', 1:number.timepoints), each = N),
stringsAsFactors=F)
# Design Matrix
X <- model.matrix( ~ Group , data = dat)
Beta <- matrix(0, nrow = ncol(X), dimnames=list(colnames(X), 'param'))
Beta[] <- c(0.2, 1)
sigma2 <- 1
# Parameters:
XB <- X %*% Beta
dat$XB <- as.vector(XB)
dat$Y <- rlnorm(n = N, meanlog = dat$XB, sd = sqrt(sigma2))
# check
hist(dat$Y)
aggregate(Y ~ Group, FUN = mean, data = dat)
aggregate(log(Y) ~ Group, FUN = mean, data = dat)
aggregate(log(Y) ~ Group, FUN = var, data = dat)
# Model?
mod <-lm(log(Y) ~ Group, data = dat)
summary(mod)
summary(mod)$sigma
vP <- c('b0' = 0.2, 'b1' = 1)
LogNormal_loglike <- function(vP, dat){
Beta.hat <- vP[c('b0', 'b1')]
Beta.hat <- matrix(Beta.hat, ncol = 1)
X <- model.matrix( ~ Group , data = dat)
Y.hat <- X %*% Beta.hat
SSE <- sum((Y.hat - log(dat$Y))^2)
return(SSE)
}
# optimize
vP <- c('b0' = 0.2, 'b1' = 1)
out <- optim(par = vP, fn = LogNormal_loglike, method = 'BFGS', dat = dat)
# Use Beta.hat to estimate the sigma:
Beta.hat <- out$par
Beta.hat <- matrix(Beta.hat, ncol = 1)
X <- model.matrix( ~ Group , data = dat)
Y.hat <- X %*% Beta.hat
sigma2.hat <- sum((Y.hat - log(dat$Y))^2)/(N-2) # N-p-1, where p is number of predictors
# Compare observed vs predicted:
mean(exp(Y.hat))
mean(dat$Y)
# Compare parameter estimates:
cbind(
'Gen param' = c(Beta, sigma2),
'Custom Function' = c(out$par, sigma2.hat),
'R package' = c(coef(mod), summary(mod)$sigma^2)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.