test_that("fitCurve works", {
data("Blank2022spec")
normTol = 0.1
normMethod = "mz"
normMz = 760.585
set.seed(43)
res <- fitCurve(spec = Blank2022spec,
SinglePointRecal = TRUE,
normMz = normMz,
alignTol = 0.1,
normTol = normTol,
varFilterMethod = "mean",
normMeth = normMethod,
verbose = TRUE)
expect_true(isMALDIassay(res))
expect_true(MALDIquant::isMassSpectrumList(getAvgSpectra(res)))
expect_true(MALDIquant::isMassPeaksList(getAvgPeaks(res)))
expect_true(MALDIquant::isMassPeaksList(getSinglePeaks(res)))
expect_equal(length(getSpots(res)), length(Blank2022spec))
expect_true(all(is.character(getSpots(res))))
expect_equal(length(getCurveFits(res)), 23)
stats <- getPeakStatistics(res, summarise = TRUE)
expect_equal(colnames(stats), c("mz", "mzIdx", "pEC50", "R2", "log2FC", "SSMD", "V'", "Z'", "CRS"))
expect_equal(dim(stats)[1], 23)
expect_equal(length(res@included_specIdx), 32)
expect_equal(getNormMethod(res), normMethod)
expect_equal(getNormMzTol(res), normTol)
expect_equal(length(getAppliedMzShift(res)), 32)
expect_equal(length(getAppliedNormFactors(res)), 32)
# test monoisotopic peaks filtering
res <- suppressWarnings(
fitCurve(spec = Blank2022spec,
SinglePointRecal = TRUE,
normMz = normMz,
alignTol = 0.1,
normTol = normTol,
varFilterMethod = "mean",
normMeth = "median",
verbose = TRUE,
monoisotopicFilter = TRUE)
)
expect_true(isMALDIassay(res))
# test no normlization and no re-cal
res <- suppressWarnings(
fitCurve(spec = Blank2022spec,
SinglePointRecal = FALSE,
normMz = normMz,
alignTol = 0.1,
normTol = normTol,
varFilterMethod = "mean",
normMeth = "none",
verbose = TRUE,
monoisotopicFilter = TRUE)
)
expect_true(isMALDIassay(res))
})
test_that("fitCurve stops as intended", {
data("Blank2022spec")
expect_error(fitCurve(spec = Blank2022spec,
SinglePointRecal = TRUE,
normMz = NULL,
alignTol = 0.1,
normTol = 0.1,
varFilterMethod = "mean",
normMeth = "mz",
verbose = TRUE))
# no names given -> error
spec <- Blank2022spec
names(spec) <- NULL
expect_error(fitCurve(spec = spec,
SinglePointRecal = TRUE,
normMz = 760.585,
alignTol = 0.1,
normTol = 0.1,
varFilterMethod = "mean",
normMeth = "mz",
verbose = TRUE))
# characters as names -> error
names(spec) <- rep("test", 32)
expect_error(
suppressWarnings(
fitCurve(spec = spec,
SinglePointRecal = TRUE,
normMz = 760.585,
alignTol = 0.1,
normTol = 0.1,
varFilterMethod = "mean",
normMeth = "mz",
verbose = TRUE)
)
)
# names to short -> error
names(spec) <- NULL
names(spec) <- 1:31
expect_error(fitCurve(spec = spec,
SinglePointRecal = TRUE,
normMz = 760.585,
alignTol = 0.1,
normTol = 0.1,
varFilterMethod = "mean",
normMeth = "mz",
verbose = TRUE))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.