predict.caperpyGridSim <- function(object, groupingFactor=c("gr","none"),
includeGrouping=FALSE, se.fit=FALSE, ...)
{
if (!inherits(object, "caperpyGridSim"))
stop("x should be of class caperpyGridSim")
groupingFactor <- match.arg(groupingFactor)
if (includeGrouping & (groupingFactor == "none")) {
warning("cannot include groupingFactor when groupingFactor is none")
includeGrouping <- FALSE
}
sim <- object$sim
what <- attr(object,"what")
if (what=="newUL") {
ry <- object$origData$newUL
} else {
ry <- object$origData$hasPreviousUL
}
if (groupingFactor=="gr") {
index <- object$origData$gr
dfs <- as.data.frame(sim)
na <- paste0("groumpf", 1:ncol(dfs))
names(dfs) <- na
dfo <- data.frame(obs = ry)
dfso <- cbind(dfo, dfs)
oo <- aggregate(dfso, by = list(index), mean)
sim <- as.matrix(oo[, na])
ry <- oo$obs
}
predi <- rowMeans(sim)
if ((se.fit + includeGrouping) == 0)
return(predi)
dfp <- data.frame(predicted = predi)
if (se.fit) {
sef <- apply(sim, 1, sd)
dfp$se <- sef
}
if (includeGrouping) {
dfp[[groupingFactor]] <- oo[, 1]
}
return(dfp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.