| RandomCutForestPredictor | R Documentation |
The implementation of :meth:'~sagemaker.predictor.Predictor.predict' in this 'Predictor' requires a numpy “ndarray“ as input. The array should contain the same number of columns as the feature-dimension of the data used to fit the model this Predictor performs inference on.
sagemaker.mlcore::PredictorBase -> sagemaker.mlcore::Predictor -> RandomCutForestPredictor
new()Initialize RandomCutForestPredictor class
RandomCutForestPredictor$new(endpoint_name, sagemaker_session = NULL)
endpoint_name(str): Name of the Amazon SageMaker endpoint to which requests are sent.
sagemaker_session(sagemaker.session.Session): A SageMaker Session object, used for SageMaker interactions (default: NULL). If not specified, one is created using the default AWS configuration chain.
clone()The objects of this class are cloneable with this method.
RandomCutForestPredictor$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.