#' Non-Dominated Sorting in Genetic Algorithms III
#'
#' Minimization of a fitness function using non-dominated sorting genetic
#' algorithms - III (NSGA-IIIs). Multiobjective evolutionary algorithms
#'
#' The Non-dominated genetic algorithms III is a meta-heuristic proposed by
#' K. Deb and H. Jain in 2013.
#' The purpose of the algorithms is to find an efficient way to optimize
#' multi-objectives functions (more than three).
#'
#' @param type the type of genetic algorithm to be run depending on the nature
#' of decision variables. Possible values are:
#' \describe{
#' \item{\code{"binary"}}{for binary representations of decision variables.}
#' \item{\code{"real-valued"}}{for optimization problems where the decision
#' variables are floating-point representations of real numbers.}
#' \item{\code{"permutation"}}{for problems that involves reordering of a list
#' of objects.}
#' }
#'
#' @param fitness the fitness function, any allowable R function which takes as
#' input an individual string representing a potential solution, and returns a
#' numerical value describing its “fitness”.
#' @param ... additional arguments to be passed to the fitness function. This
#' allows to write fitness functions that keep some variables fixed during the
#' search
#' @param lower a vector of length equal to the decision variables providing the
#' lower bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param upper a vector of length equal to the decision variables providing the
#' upper bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param nBits a value specifying the number of bits to be used in binary
#' encoded optimizations.
#' @param population an R function for randomly generating an initial population.
#' See [rmoo_Population()] for available functions.
#' @param selection an R function performing selection, i.e. a function which
#' generates a new population of individuals from the current population
#' probabilistically according to individual fitness. See [rmoo_Selection()]
#' for available functions.
#' @param crossover an R function performing crossover, i.e. a function which
#' forms offsprings by combining part of the
#' genetic information from their parents. See [rmoo_Crossover()]
#' for available functions.
#' @param mutation an R function performing mutation, i.e. a function which
#' randomly alters the values of some genes in a parent chromosome.
#' See [rmoo_Mutation()] for available functions.
#' @param popSize the population size.
#' @param nObj number of objective in the fitness function.
#' @param n_partitions Partition number of generated reference points
#' @param pcrossover the probability of crossover between pairs of chromosomes.
#' Typically this is a large value and by default is set to 0.8.
#' @param pmutation the probability of mutation in a parent chromosome. Usually
#' mutation occurs with a small probability, and by default is set to 0.1.
#' @param reference_dirs Function to generate reference points using Das and
#' Dennis approach or matrix with supplied reference points.
#' @param maxiter the maximum number of iterations to run before the NSGA search
#' is halted.
#' @param run the number of consecutive generations without any improvement in
#' the best fitness value before the NSGA is stopped
#' @param maxFitness the upper bound on the fitness function after that the NSGA
#' search is interrupted.
#' @param names a vector of character strings providing the names of decision
#' variables.
#' @param suggestions a matrix of solutions strings to be included in the initial
#' population. If provided the number of columns must match the number of
#' decision variables.
#' @param parallel An optional argument which allows to specify if the NSGA-II
#' should be run sequentially or in parallel.
#' @param monitor a logical or an R function which takes as input the current
#' state of the nsga-class object and show the evolution of the search.
#' By default, for interactive sessions the function rmooMonitor prints the
#' average and best fitness values at each iteration. If set to plot these
#' information are plotted on a graphical device. Other functions can be written
#' by the user and supplied as argument. In non interactive sessions, by default
#' monitor = FALSE so any output is suppressed.
#' @param summary If there will be a summary generation after generation.
#' @param seed an integer value containing the random number generator state.
#' This argument can be used to replicate the results of a NSGA search. Note
#' that if parallel computing is required, the doRNG package must be installed.
#'
#' @author Francisco Benitez
#' \email{benitezfj94@gmail.com}
#'
#' @references K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization
#' Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I:
#' Solving Problems With Box Constraints," in IEEE Transactions on Evolutionary
#' Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014,
#' doi: 10.1109/TEVC.2013.2281535.
#'
#' Scrucca, L. (2017) On some extensions to 'GA' package: hybrid optimisation,
#' parallelisation and islands evolution. The R Journal, 9/1, 187-206.
#' doi: 10.32614/RJ-2017-008
#'
#' @seealso [nsga()], [nsga2()]
#'
#' @return Returns an object of class nsga3-class. See [nsga3-class] for a
#' description of available slots information.
#'
#' @examples
#' #Example 1
#' #Two Objectives - Real Valued
#' zdt1 <- function (x) {
#' if (is.null(dim(x))) {
#' x <- matrix(x, nrow = 1)
#' }
#' n <- ncol(x)
#' g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
#' return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))
#' }
#'
#' #Not run
#' \dontrun{
#' result <- nsga3(type = "real-valued",
#' fitness = zdt1,
#' lower = c(0,0),
#' upper = c(1,1),
#' popSize = 100,
#' nObj = 2,
#' n_partitions = 100,
#' monitor = FALSE,
#' maxiter = 500)
#' }
#'
#' #Example 2
#' #Three Objectives - Real Valued
#' dtlz1 <- function (x, nobj = 3, ...){
#' if (is.null(dim(x))) {
#' x <- matrix(x, 1)
#' }
#' n <- ncol(x)
#' y <- matrix(x[, 1:(nobj - 1)], nrow(x))
#' z <- matrix(x[, nobj:n], nrow(x))
#' g <- 100 * (n - nobj + 1 + rowSums((z - 0.5)^2 - cos(20 * pi * (z - 0.5))))
#' tmp <- t(apply(y, 1, cumprod))
#' tmp <- cbind(t(apply(tmp, 1, rev)), 1)
#' tmp2 <- cbind(1, t(apply(1 - y, 1, rev)))
#' f <- tmp * tmp2 * 0.5 * (1 + g)
#' return(f)
#' }
#'
#' #Not Run
#' \dontrun{
#' result <- nsga3(type = "real-valued",
#' fitness = dtlz1,
#' lower = c(0,0,0),
#' upper = c(1,1,1),
#' popSize = 92,
#' nObj = 3,
#' n_partitions = 12,
#' monitor = FALSE,
#' maxiter = 500)
#' }
#'
#' @export
nsga3 <- function(type = c("binary", "real-valued", "permutation"),
fitness, ...,
lower, upper, nBits,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
popSize = 50,
nObj = NULL,
n_partitions = NULL,
pcrossover = 0.8,
pmutation = 0.1,
reference_dirs = generate_reference_points,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
parallel = FALSE,
monitor = if (interactive()) rmooMonitor else FALSE,
summary = FALSE,
seed = NULL)
{
call <- match.call()
type <- match.arg(type, choices = eval(formals(nsga3)$type))
callArgs <- list(...)
callArgs$strategy <- NULL
if (!is.function(population))
population <- get(population)
if (!is.function(selection))
selection <- get(selection)
if (!is.function(crossover))
crossover <- get(crossover)
if (!is.function(mutation))
mutation <- get(mutation)
if (!is.function(reference_dirs) & !is.matrix(reference_dirs)) {
stop("A Determination of Reference Points function
or matrix must be provided")
}
if (is.function(reference_dirs) & is.null(popSize)) {
popSize <- nrow(reference_dirs(nObj, n_partitions))
} else {
if (is.matrix(reference_dirs) & is.null(popSize)) {
popSize <- nrow(reference_dirs)
}
}
if (is.null(nObj)) {
stop("Please, define the objective number (nObj)")
} else {
if (!is.numeric(nObj) | (nObj%%1!=0)) {
stop("Objective number (nObj) is a character or is not an integer.")
}
}
if (missing(fitness)) {
stop("A fitness function must be provided")
}
if (!is.function(fitness)) {
stop("A fitness function must be provided")
}
if (popSize < 10) {
warning("The population size is less than 10.")
}
if (maxiter < 1) {
stop("The maximum number of iterations must be at least 1.")
}
if (pcrossover < 0 | pcrossover > 1) {
stop("Probability of crossover must be between 0 and 1.")
}
if (is.numeric(pmutation)) {
if (pmutation < 0 | pmutation > 1) {
stop("If numeric probability of mutation must be between 0 and 1.")
}
else if (!is.function(population)) {
stop("pmutation must be a numeric value in (0,1) or a function.")
}
}
if (missing(lower) & missing(upper) & missing(nBits)) {
stop("A lower and upper range of values (for 'real-valued' or 'permutation') or nBits (for 'binary') must be provided!")
}
#Generate reference points, otherwise, assign the provided matrix
if (is.function(reference_dirs)) {
reference_dirs <- reference_dirs(nObj, n_partitions)
#ref_dirs <- reference_dirs(nObj, n_partitions)
}
# else {
# ref_dirs <- reference_dirs
# }
callArgs$reference_dirs <- reference_dirs
if (ncol(reference_dirs) != nObj) {
stop("Dimensionality of reference points must be equal to the number of objectives")
}
switch(type,
binary = {
nBits <- as.vector(nBits)[1]
lower <- upper <- NA
nvars <- nBits
if (is.null(names)) names <- paste0("x", 1:nvars)
},
`real-valued` = {
lnames <- names(lower)
unames <- names(upper)
lower <- as.vector(lower)
upper <- as.vector(upper)
nBits <- NA
if (length(lower) != length(upper))
stop("lower and upper must be vector of the same length")
#if ((length(lower) != nObj) & (length(upper) != nObj))
# stop("The lower and upper limits must be vector of the same number of objectives")
nvars <- length(upper)
if (is.null(names) & !is.null(lnames))
names <- lnames
if (is.null(names) & !is.null(unames))
names <- unames
if (is.null(names))
names <- paste0("x", 1:nvars)
},
permutation = {
lower <- as.vector(lower)[1]
upper <- as.vector(upper)[1]
nBits <- NA
nvars <- length(seq.int(lower, upper))
if (is.null(names))
names <- paste0("x", 1:nvars)
}
)
if (is.null(suggestions)) {
suggestions <- matrix(nrow = 0, ncol = nvars)
} else {
if (is.vector(suggestions)) {
if (nvars > 1)
suggestions <- matrix(suggestions, nrow = 1)
else
suggestions <- matrix(suggestions, ncol = 1)
} else {
suggestions <- as.matrix(suggestions)
}
if (nvars != ncol(suggestions))
stop("Provided suggestions (ncol) matrix do not match number of variables of the problem")
}
# check monitor arg
if (is.logical(monitor)) {
if (monitor)
monitor <- rmooMonitor
}
if (is.null(monitor)) monitor <- FALSE
# Start parallel computing (if needed)
if(is.logical(parallel)){
if(parallel) {
parallel <- startParallel(parallel)
stopCluster <- TRUE
} else {
parallel <- stopCluster <- FALSE
}
}else {
stopCluster <- if(inherits(parallel, "cluster")) FALSE else TRUE
parallel <- startParallel(parallel)
}
on.exit(if(parallel & stopCluster)
stopParallel(attr(parallel, "cluster")))
# define operator to use depending on parallel being TRUE or FALSE
`%DO%` <- if(parallel && requireNamespace("doRNG", quietly = TRUE)){
doRNG::`%dorng%` } else if (parallel){ foreach::`%dopar%` } else { foreach::`%do%` }
# set seed for reproducibility
if (!is.null(seed))
set.seed(seed)
i. <- NULL #dummy to trick R CMD check
Fitness <- matrix(NA, nrow = popSize, ncol = nObj)
fitnessSummary <- vector("list", maxiter)
n_remaining <- popSize
#Creacion del objetivo tipo nsga
object <- new("nsga3",
call = call,
type = type,
lower = lower,
upper = upper,
nBits = nBits,
names = if (is.null(names))
character()
else names,
popSize = popSize,
front = matrix(),
f = list(),
iter = 0,
run = 1,
maxiter = maxiter,
suggestions = suggestions,
population = matrix(),
ideal_point = NA, #Agregar en nsga3-class
worst_point = NA, #Agregar en nsga3-class
smin = rep(NA, nObj),
extreme_points = matrix(), #Agregar en nsga3-class
worst_of_population = rep(NA, nObj), #Agregar en nsga3-class
worst_of_front = rep(NA, nObj), #Agregar en nsga3-class
nadir_point = rep(NA, nObj),
pcrossover = pcrossover,
pmutation = if (is.numeric(pmutation))
pmutation
else NA,
reference_points = reference_dirs, #Agregar en nsga3-class
fitness = Fitness,
summary = fitnessSummary)
#Generate initial population
if (maxiter == 0)
return(object)
p_fit <- q_fit <- matrix(NA_real_, nrow = popSize, ncol = nObj)
switch(type,
binary = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nBits)
},
`real-valued` = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nvars)
},
permutation = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nvars)
}
)
ng <- min(nrow(suggestions), popSize)
if (ng > 0) {
Pop[1:ng, ] <- suggestions
}
if (popSize > ng) {
Pop[(ng + 1):popSize, ] <- population(object)[1:(popSize - ng), ]
}
object@population <- Pop
if(!parallel) {
for (i in seq_len(popSize)) {
if (is.na(Fitness[i])) {
fit <- do.call(fitness, c(list(Pop[i, ]), callArgs))
Fitness[i, ] <- fit
}
}
} else {
Fitness <- foreach(i. = seq_len(popSize), .combine = "rbind") %DO%
{ if(is.na(Fitness[i.]))
do.call(fitness, c(list(Pop[i.,]), callArgs))
else
Fitness[i.,]
}
}
object@population <- P <- Pop
object@fitness <- p_fit <- Fitness
#First Non-dominated Ranking
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
# object@crowdingDistance <- c() Crowding measure with the smallest distance to reference points
for (iter in seq_len(maxiter)) {
object@iter <- iter
#Selection Operator
if (is.function(selection)) {
sel <- selection(object, nObj)
Pop <- sel$population
Fitness <- sel$fitness
} else {
sel <- sample(1:popSize, size = popSize, replace = TRUE)
Pop <- object@population[sel, ]
Fitness <- object@fitness[sel, ]
}
object@population <- Pop
object@fitness <- Fitness
#Cross Operator
if (is.function(crossover) & pcrossover > 0) {
nmating <- floor(popSize / 2)
mating <- matrix(sample(1:(2 * nmating), size = (2 * nmating)), ncol = 2)
for (i in seq_len(nmating)) {
if (pcrossover > runif(1)) {
parents <- mating[i, ]
Crossover <- crossover(object, parents)
Pop[parents, ] <- Crossover$children
Fitness[parents, ] <- Crossover$fitness
}
}
}
object@population <- Pop
object@fitness <- Fitness
#Mutation Operator
pm <- if (is.function(pmutation)) {
pmutation(object)
} else {pmutation}
if (is.function(mutation) & pm > 0) {
for (i in seq_len(popSize)) {
if (pm > runif(1)) {
Mutation <- mutation(object, i)
Pop[i, ] <- Mutation
Fitness[i,] <- NA
}
}
}
object@population <- Q <- Pop
object@fitness <- q_fit <- Fitness
#Evaluate Fitness
if(!parallel) {
for (i in seq_len(popSize)) {
if (is.na(Fitness[i])) {
fit <- do.call(fitness, c(list(Pop[i, ]), callArgs))
Fitness[i, ] <- fit
}
}
} else {
Fitness <- foreach(i. = seq_len(popSize), .combine = "rbind") %DO%
{ if(is.na(Fitness[i.]))
do.call(fitness, c(list(Pop[i.,]), callArgs))
else
Fitness[i.,]
}
}
object@population <- Q <- Pop
object@fitness <- q_fit <- Fitness
#R = P U Q
object@population <- Pop <- rbind(P,Q)
object@fitness <- rbind(p_fit, q_fit)
#NSGA-III Operator
ideal_point <- UpdateIdealPoint(object, nObj)
worst_point <- UpdateWorstPoint(object, nObj)
object@ideal_point <- ideal_point
object@worst_point <- worst_point
out <- non_dominated_fronts(object)
con <- 0
for (i in 1:length(out$fit)) {
con <- con + length(out$fit[[i]])
st <- i
if(con >= object@popSize) break
}
object@f <- out$fit[1:st]
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
rm(out)
ps <- PerformScalarizing(object@population[unlist(object@f), ],
object@fitness[unlist(object@f), ],
object@smin,
object@extreme_points,
object@ideal_point)
object@extreme_points <- ps$extremepoint
object@smin <- ps$indexmin
worst_of_population <- worst_of_front <- c()
worst_of_population <- apply(object@fitness, 2, max)
# worst_of_front <- apply(object@fitness[object@f[[1]], ], 2, max)
# If the first front is by a single fit
worst_of_front <- if (length(object@f[[1]]) == 1)
object@fitness[object@f[[1]], ]
else apply(object@fitness[object@f[[1]], ], 2, max)
object@worst_of_population <- worst_of_population
object@worst_of_front <- worst_of_front
nadir_point <- get_nadir_point(object)
object@nadir_point <- nadir_point
I <- unlist(object@f)
object@population <- object@population[I, ]
object@front <- object@front[I, ]
object@fitness <- object@fitness[I, ]
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
last_front <- out$fit[[max(length(out$fit))]]
rm(out)
# outniches <- associate_to_niches(object)
# If the first front is by a single fit
outniches <- if (length(object@f[[1]]) == 1)
associate_to_niches(object, utopian_epsilon = 0.00001)
else associate_to_niches(object)
niche_of_individuals <- outniches$niches
dist_to_niche <- outniches$distance
rm(outniches)
#Generate the next generation
if (nrow(object@population) > popSize) {
if (length(object@f) == 1) {
until_last_front <- c()
niche_count <- rep(0, nrow(object@reference_points))
n_remaining <- popSize
} else {
until_last_front <- unlist(object@f[1:(length(object@f) - 1)])
niche_count <- compute_niche_count(nrow(object@reference_points),
niche_of_individuals[until_last_front])
n_remaining <- popSize - length(until_last_front)
}
s_idx <- niching(pop = object@population[last_front, ],
n_remaining = n_remaining,
niche_count = niche_count,
niche_of_individuals = niche_of_individuals[last_front],
dist_to_niche = dist_to_niche[last_front])
survivors <- append(until_last_front, last_front[s_idx])
object@population <- P <- Pop <- object@population[survivors, ]
object@fitness <- p_fit <- object@fitness[survivors, ]
}
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
rm(out)
if (summary == TRUE) {
fitnessSummary[[iter]] <- progress(object, callArgs)
object@summary <- fitnessSummary
} else {
object@summary <- list(NULL)
}
#Plot front non-dominated by iteration
if (is.function(monitor)) {
monitor(object = object, callArgs)
# monitor(object = object, number_objective = nObj)
}
if (max(Fitness, na.rm = TRUE) >= maxFitness)
break
if (object@iter == maxiter)
break
}
solution <- object
return(solution)
}
## NSGA-III Bare Process
# @export
nsga_iii <- function(object, nObj) {
popSize <- object@popSize
Pop <- object@population
p_fit <- object@fitness
object@ideal_point <- UpdateIdealPoint(object, nObj)
object@worst_point <- UpdateWorstPoint(object, nObj)
con <- 0
for (i in 1:length(object@f)) {
con <- con + length(object@f[[i]])
st <- i
if(con >= object@popSize) break
}
object@f <- object@f[1:st]
ps <- PerformScalarizing(object@population[unlist(object@f), ],
object@fitness[unlist(object@f), ],
object@smin,
object@extreme_points,
object@ideal_point)
object@extreme_points <- ps$extremepoint
object@smin <- ps$indexmin
# worst_of_population <- worst_of_front <- c()
worst_of_population <- apply(object@fitness, 2, max)
worst_of_front <- if (length(object@f[[1]]) == 1)
object@fitness[object@f[[1]], ]
else apply(object@fitness[object@f[[1]], ], 2, max)
object@worst_of_population <- worst_of_population
object@worst_of_front <- worst_of_front
object@nadir_point <- get_nadir_point(object)
I <- unlist(object@f)
object@population <- object@population[I, ]
object@front <- object@front[I, ]
object@fitness <- object@fitness[I, ]
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
last_front <- out$fit[[max(length(out$fit))]]
outniches <- if (length(object@f[[1]]) == 1) associate_to_niches(object, utopian_epsilon = 0.00001)
else associate_to_niches(object)
niche_of_individuals <- outniches$niches
dist_to_niche <- outniches$distance
if (nrow(object@population) > popSize) {
if (length(object@f) == 1) {
until_last_front <- c()
niche_count <- rep(0, nrow(object@reference_points))
n_remaining <- popSize
} else {
until_last_front <- unlist(object@f[1:(length(object@f) - 1)])
niche_count <- compute_niche_count(nrow(object@reference_points),
niche_of_individuals[until_last_front])
n_remaining <- popSize - length(until_last_front)
}
s_idx <- niching(pop = object@population[last_front, ],
n_remaining = n_remaining,
niche_count = niche_count,
niche_of_individuals = niche_of_individuals[last_front],
dist_to_niche = dist_to_niche[last_front])
survivors <- append(until_last_front, last_front[s_idx])
object@population <- P <- Pop <- object@population[survivors, ]
object@fitness <- p_fit <- object@fitness[survivors, ]
}
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
# return(object)
out <- list(object = object,
p_pop = Pop,
p_fit = p_fit)
return(out)
}
# @export
#' @rdname progress-methods
#' @aliases progress,nsga3-method
setMethod("progress", "nsga3", .nsga3.progress)
# @export
#' @rdname plot-methods
#' @aliases plot,nsga3-method
setMethod("plot", signature(x="nsga3", y="missing"), .get.plotting)
# @export
#' @rdname print-methods
#' @aliases print,nsga3-method
setMethod("print", "nsga3",
function(x, ...) {
# algorithm <- class(object)[1]
# Print
cat("Slots Configuration:\n")
print((slotNames(x)))
cat("\n#========================================#\n")
cat("\nTotal iterations: ", x@iter)
cat("\nPopulation size: ", x@popSize)
if (x@type == "binary") {
cat("\nNumber of Bits: ", x@nBits)
} else{
cat("\nLower Bounds: ", x@lower)
cat("\nLower Bounds: ", x@upper)
}
cat("\nEstimated Ideal Point: ", x@ideal_point)
cat("\nEstimated Worst Point: ", x@worst_point)
cat("\nEstimated Nadir Point: ", x@nadir_point)
cat("\nNumber of Nondominated Front: ", length(x@f[[1]]))
cat("\n#========================================#\n")
}
)
# @export
#' @rdname summary-methods
#' @aliases summary,nsga3-method
setMethod("summary", "nsga3",
function(object, ...){
callArgs <- list(...)
nullRP <- is.null(callArgs$reference_dirs)
# Calculate information for summary
first <- object@f[[1]]
first_front_fit <- object@fitness[first, ]
first_front_pop <- object@population[first, ]
nadir_point <- object@nadir_point
#first_dum <- object@dumFitness[first, ] for nsga1 summary method
if("ecr" %in% rownames(utils::installed.packages())){
if (nullRP) {
cat("Warning! \nReference points not provided:\n
value necessary to evaluate GD and IGD.")
} else{
gd <- ecr::computeGenerationalDistance(t(object@fitness), t(callArgs$reference_dirs))
igd <- ecr::computeInvertedGenerationalDistance(t(object@fitness), t(callArgs$reference_dirs))
}
}
if("emoa" %in% rownames(utils::installed.packages())){
if(nullRP) {
cat("\nUsing the maximum in each dimension to evaluate Hypervolumen")
reference_point <- nadir_point
} else {reference_point <- apply(callArgs$reference_dirs, 2, max)}
hv <- emoa::dominated_hypervolume(points = t(object@fitness[first, ]), ref = reference_point)
}
cat("\nSummary of NSGA-III run")
cat("\n#====================================")
cat("\nNumber of Objectives evaluated: ", ncol(object@fitness))
cat("\nTotal iterations: ", object@iter)
cat("\nPopulation size: ", object@popSize)
#cat("\nFeasible points found: ", nfeas,paste0("(", signif(100 * nfeas / npts, 3), "%"),"of total)")
cat("\nNondominated points found: ", length(first),
paste0("(", signif(100 * length(first) / object@popSize, 3), "%"),
"of total)")
cat("\nEstimated ideal point: ", round(object@ideal_point, 3))
cat("\nEstimated nadir point: ", round(object@nadir_point, 3))
cat("\nMutation Probability: ",
paste0(signif(100 * object@pmutation, 3), "%"))
cat("\nCrossover Probability: ",
paste0(signif(100 * object@pcrossover, 3), "%"))
if("ecr" %in% rownames(utils::installed.packages())){
if(!nullRP) cat("\nEstimated IGD: ", igd)
if(!nullRP) cat("\nEstimated GD: ", gd)
} else cat("\n\nPlease install package 'ecr' to calculate IGD and GD.")
if("emoa" %in% rownames(utils::installed.packages())) {
cat("\nEstimated HV: ", hv)
cat("\nRef point used for HV: ", reference_point)
} else cat("\n\nPlease install package 'emoa' to calculate hypervolume.")
cat("\n#====================================")
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.