#' @title Heads or Tails Alignment Reliability
#' @description MSA reliability assessment HoT (Landan and Graur 2008)
#' @param sequences object of class \code{\link{DNAbin}} or \code{\link{AAbin}}
#' containing unaligned sequences of DNA or amino acids.
#' @param method further argument passed to MAFFT, default is \code{"auto"}
#' @param bootstrap integer giving the number of alternative MSAs to be computed
#' @param msa.exec A character string giving the path to the executable of the
#' alignment program (e.g. \code{/usr/local/bin/mafft}); possible programs are
#' \code{MAFFT}, \code{MUSCLE}, and \code{ClustalW}.
#' For details see \code{\link{clustal}}, \code{\link{mafft}}
#' @param ncore integer specifying the number of cores; default = 1 (serial),
#' "auto" can be used for automated usage of all detected cores.
#' @param zip.file A character string giving the name for the output zip file.
#' @return An object of class \code{\linkS4class{guidanceDNA}} or
#' \code{\linkS4class{guidanceAA}}.
#' @details Calculates column reliability (and other scors) by comparing
#' alternative MSAs generated by aligning guide tree partitions as described
#' in Landan and Graur (2008). For details see \code{compareMSAs}. 8*(N-3)
#' alternative MSAs are generated by default, where N is the number of
#' sequences.
#' @details For an example workflow see Vignette
#' @references Landan and Graur. 2008. Local reliability measures from
#' sets of co-optimal multiple sequence alignments. \emph{Pacific Symposium on
#' Biocomputing} \strong{13}:15--24.
#' @seealso \code{\link{msa_set_score}}, \code{\link{guidance}},
#' \code{\link{guidance2}}
#' @examples
#' \dontrun{
#' # run GUIDANCE on example data using MAFFT
#' fpath <- system.file("extdata", "BB30015.fasta", package="rGUIDANCE") # random example from BALiBASE
#' fas <- ape::read.FASTA(fpath)
#' g <- HoT(sequences = fas, msa.exec= "/usr/local/bin/mafft")
#' scores <- scores(g, score = "column")
#' plot(scores$column$score, xlab = "Site",
#' ylab = "Column score",
#' main = "HoT", type ="l")
#' }
#'
#' @author Franz-Sebastian Krah
#' @importFrom ape compute.brlen ladderize multi2di Ntip
#' @importFrom ips mafft read.fas
#' @import doSNOW
#' @import foreach
#' @importFrom graphics legend
#' @importFrom stringr str_extract
#' @import parallel
#' @import pbmcapply
#' @import plyr
#' @importFrom phangorn as.phyDat dist.ml
#' @importFrom utils setTxtProgressBar txtProgressBar zip
#' @export
HoT <- function(sequences, method = "auto",
bootstrap,
msa.exec = "/usr/local/bin/mafft",
ncore = 1,
zip.file) {
##############################################
## SOME CHECKS
##############################################
if (!inherits(sequences, c("DNAbin","AAbin")))
stop("sequences not of classes DNAbin or AAbin (ape)")
nseq <- ifelse(is.matrix(sequences), nrow(sequences), length(sequences))
if (nseq > 199)
warning("alignments with more than 200 sequences may run into computional problems")
## look up MSA program specified
msa.program <- str_extract(msa.exec, "mafft|muscle|clustalo|clustalw|prank")
if (!msa.program %in% c("mafft", "muscle", "clustalw"))
stop("Currently only MAFFT, MUSCLE or ClustalW")
## Check for MSA program
out <- system(paste(msa.exec, "--v"), ignore.stdout = TRUE, ignore.stderr = TRUE)
if (out == 127)
stop("please provide msa.exec path or install MSA program in root \n
i.e. in Unix: '/usr/local/bin/mafft'")
## Check for MSA program
## ---------------------
out <- system(paste(msa.exec, "--v"), ignore.stdout = TRUE, ignore.stderr = TRUE)
if (out == 127)
stop("please provide exec path or install MSA program in root \n
i.e. in Unix: '/usr/local/bin/mafft'")
## generate some parameters if not specified
#---------------------------------------------
## number of cores
if (ncore == "auto") {
ncore <- detectCores(all.tests = FALSE, logical = TRUE)
}
##############################################
## PART I
##############################################
## BASE and ALTERNATIVE MSAs
##############################################
cat("Generating the base alignment \n")
## create loop input
if (msa.program == "mafft") {
base_msa <- mafft(x = sequences,
exec = msa.exec, method = method,
maxiterate = 0, op = 1.53, ep = 0,
thread = -1)
}
if (msa.program == "clustalw") {
base_msa <- clustal(x = sequences,
exec = msa.exec,
pw.gapopen = 10, pw.gapext = 0.1,
gapopen = 10, gapext = 0.2,
MoreArgs = "")
}
if (msa.program == "muscle") {
base_msa <- muscle(x = sequences,
exec = msa.exec,
MoreArgs = "")
}
## Calculate start guide tree
#----------------------------------------------
cat("Calculate start tree \n")
base.msa.ml <- as.phyDat(base_msa)
# find ML distance as input to nj tree search
ml.dist.msa <- dist.ml(base.msa.ml)
# NJ
start_tree <- nj(ml.dist.msa)
start_tree <- multi2di(start_tree)
start_tree <- compute.brlen(start_tree)
## produce MSA partitions
align_parts <- partitions(start_tree)
# here could be a sampling of co-opts like in
# guidance2. now we sample all
n.coopt.sub <- rep("all", ncol(align_parts))
n.coopt <- (Ntip(start_tree) - 3) * 8
##############################################
## PART II
##############################################
## Co-optimal MSAs
##############################################
cat(paste("Sampling", n.coopt, "co-optimal alignments \n", sep = " "))
## Create temporary files
#----------------------------------------------
msa_out <- vector(length = n.coopt)
for (i in seq_along(msa_out))
msa_out[i] <- tempfile(pattern = "HoT", tmpdir = tempdir(), fileext = ".fas")
unlink(msa_out[file.exists(msa_out)])
# predifined file storage allocation (because it runs in batches of 8)
start <- seq(1, n.coopt, 8)
end <- seq(8, n.coopt, 8)
stend <- data.frame(start, end)
## Run batch alignments
#----------------------------------------------
pb <- txtProgressBar(max = ncol(align_parts), style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)
cl <- makeCluster(ncore)
registerDoSNOW(cl)
alt_msa <- foreach(i = 1:ncol(align_parts),
.options.snow = opts,
.packages = "ape"
) %dopar% {
align_part_set(x = sequences, partition_set = align_parts[,i],
coopt.sub = n.coopt.sub[i],
method = method, msa.exec = msa.exec)
}
stopCluster(cl)
close(pb)
#### unlist nested list
alt_msa <- foreach(i = 1:length(alt_msa), .combine = c) %do% {
alt_msa[[1]]
}
##############################################
## PART III
##############################################
## Computation of reliability scores
##############################################
cat("Calculating reliability scores \n")
## HoT Score
#----------------------------------------------
score <- msa_set_score(ref = base_msa,
alt = alt_msa)
## if wanted, store alternative MSAs into a zip file
if (!missing(zip.file)){
for(i in seq_along(alt_msa)){
write.FASTA(alt_msa[[i]], file =paste0(zip.file, "alt_msa_", i, ".fas"))
}
files <- list.files(zip.file, full.names = T)
files <- files[grep("alt_msa", files)]
zip(zipfile = paste0(zip.file, "Hot_alt_msas_", Sys.Date(), ".zip"), files = files)
file.remove(files)
}
## Return guidance class
## -------------------------
if (inherits(sequences, "AAbin")){
guidanceAA(base_msa, score, "HoT", msa.program)
} else {
guidanceDNA(base_msa, score, "HoT", msa.program)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.