R/mash.R

Defines functions run_mash tabToMatrix

Documented in run_mash tabToMatrix

# Gabriel Hoffman
# Nov 15, 2021

#' Class dreamlet_mash_result
#'
#' Class \code{dreamlet_mash_result}
#'
#' @name dreamlet_mash_result-class
#' @rdname dreamlet_mash_result-class
#' @exportClass dreamlet_mash_result
#' @return \code{dreamlet_mash_result} class
setClass("dreamlet_mash_result", contains = "list")



#' Convert results table to matrix
#'
#' Convert results table to matrix
#'
#' @param tab results table from \code{topTable()}
#' @param col which column to extract
#' @param rn column id storing rownames
#' @param cn column id storing colnames
#'
#' @return matrix storing values of column \code{col} in rows defind by \code{rn} and columns defined by \code{cn}
#'
#' @importFrom Matrix sparseMatrix
tabToMatrix <- function(tab, col, rn = "ID", cn = "assay") {
  # check column names
  if (!rn %in% colnames(tab)) stop("Column not found: ", rn)
  if (!cn %in% colnames(tab)) stop("Column not found: ", cn)

  # convert query column names to factor
  if (!is.factor(tab[[rn]])) tab[[rn]] <- factor(tab[[rn]])
  if (!is.factor(tab[[cn]])) tab[[cn]] <- factor(tab[[cn]])

  # extract row and column names for resulting matrix
  rnlvl <- levels(tab[[rn]])
  cnlvl <- levels(tab[[cn]])

  # get indeces
  i <- match(tab[[rn]], rnlvl)
  j <- match(tab[[cn]], cnlvl)

  # convert row,col,value to sparse matrix
  # empty entries are set to 0
  M <- sparseMatrix(i, j,
    x = tab[[col]],
    dims = c(length(rnlvl), length(cnlvl)),
    dimnames = list(rnlvl, cnlvl)
  )

  # convert to real matrix
  data <- as.matrix(M)

  # replace 0's with NA
  # since
  data[data == 0] <- NA

  data
}


#' Run mash analysis on dreamlet results
#'
#' Run mash analysis on dreamlet results
#'
#' @param fit result from \code{dreamlet()}
#' @param coefList coefficient to be analyzed. Assumes 1) the null distribution of the two coefficients is simular, 2) the effects sizes are on the same scale, and 3) the effect estimates should be shrunk towards each other.  If these are not satisfied, run separately on each coefficient
#'
#' @details
#' Apply \href{https://cran.r-project.org/web/packages/mashr/index.html}{mashr} analysis \insertCite{urbut2019flexible}{dreamlet} on the joint set of coefficients for each gene and cell type.  \code{mashr} is a Bayesian statistical method that borrows strength across tests (i.e. genes and cell types) by learning the distribution of non-zero effects based the obesrved logFC and standard errors.  The method then estimates the posterior distributions of each coefficient based on the observed value and the genome-wide emprical distribution.
#'
#' \code{mashr} has been previously applied to differential expression in \href{https://www.gtexportal.org}{GTEx} data using multiple tissues from the same set of donors \insertCite{oliva2020impact}{dreamlet}.
#'
#' In single cell data, a given gene is often not sufficiently expressed in all cell types.  So it is not evaluated in a subsets of cell types, and its coefficient value is \code{NA}. Since mashr assumes coefficients and standard errors for every gene and cell type pair, entries with these missing values are set to have \code{coef = 0}, and \code{se = 1e6}.  The output of mashr is then modified to set the corresponding values to \code{NA}, to avoid nonsensical results downstream.
#'
#' @return a list storing the \code{mashr} model as \code{model} and the original coefficients as \code{logFC.original}
#'
#' @examples
#' library(muscat)
#' library(mashr)
#' library(SingleCellExperiment)
#'
#' data(example_sce)
#'
#' # create pseudobulk for each sample and cell cluster
#' pb <- aggregateToPseudoBulk(example_sce[1:100, ],
#'   assay = "counts",
#'   cluster_id = "cluster_id",
#'   sample_id = "sample_id",
#'   verbose = FALSE
#' )
#'
#' # voom-style normalization
#' res.proc <- processAssays(pb, ~group_id)
#'
#' # Differential expression analysis within each assay,
#' # evaluated on the voom normalized data
#' res.dl <- dreamlet(res.proc, ~group_id)
#'
#' # run MASH model
#' # This can take 10s of minutes on real data
#' # This small datasets should take ~30s
#' res_mash <- run_mash(res.dl, "group_idstim")
#'
#' # extract statistics from mashr model
#' # NA values indicate genes not sufficiently expressed
#' # in a given cell type
#'
#' # original logFC
#' head(res_mash$logFC.original)
#'
#' # posterior mean for logFC
#' head(get_pm(res_mash$model))
#'
#' # how many gene-by-celltype tests are significant
#' # i.e.  if a gene is significant in 2 celltypes, it is counted twice
#' table(get_lfsr(res_mash$model) < 0.05, useNA = "ifany")
#'
#' # how many genes are significant in at least one cell type
#' table(apply(get_lfsr(res_mash$model), 1, min, na.rm = TRUE) < 0.05)
#'
#' # how many genes are significant in each cell type
#' apply(get_lfsr(res_mash$model), 2, function(x) sum(x < 0.05, na.rm = TRUE))
#'
#' # examine top set of genes
#' # which genes are significant in at least 1 cell type
#' sort(names(get_significant_results(res_mash$model)))[1:10]
#'
#' # Lets examine ENO1
#' # There is a lot of variation in the raw logFC
#' res_mash$logFC.original["ENO1", ]
#'
#' # posterior mean after borrowing across cell type and genes
#' get_pm(res_mash$model)["ENO1", ]
#'
#' # forest plot based on mashr results
#' plotForest(res_mash, "ENO1")
#'
#' # volcano plot based on mashr results
#' # yaxis uses local false sign rate (lfsr)
#' plotVolcano(res_mash)
#'
#' # Comment out to reduce package runtime
#' # gene set analysis using mashr results
#' # library(zenith)
#' # go.gs = get_GeneOntology("CC", to="SYMBOL")
#' # df_gs = zenith_gsa(res_mash, go.gs)
#'
#' # Heatmap of results
#' # plotZenithResults(df_gs, 2, 1)
#'
#' @references{
#' \insertAllCited{}
#' }
#'
#' @seealso \code{mashr::mash_estimate_corr_em()}, \code{mashr::cov_canonical}, \code{mashr::mash_set_data}
#' @importFrom mashr mash_set_data cov_canonical mash_estimate_corr_em
#' @importFrom MatrixGenerics colVars
#' @export
run_mash <- function(fit, coefList) {
  if (!is(fit, "dreamletResult")) {
    stop("fit must be of class dreamletResult")
  }

  if (!all(coefList %in% coefNames(fit))) {
    stop("coef not found in coefNames(fit): ", coefList)
  }

  tab <- lapply(coefList, function(coef) {
    # get results for each gene and cell type
    tab <- topTable(fit, coef = coef, Inf)
    tab$coef <- coef
    tab
  })
  tab <- do.call(rbind, tab)

  if (length(coefList) > 1) {
    tab$assay <- paste(tab$assay, tab$coef, sep = ".")
    nlvls = length(coefList)
    lvls <- c(vapply(assayNames(fit), function(x) paste(x, coefList, sep = "."), character(nlvls)))
  } else {
    lvls <- assayNames(fit)
  }

  # compute standard error from t-stat and logFC
  tab$se <- tab$logFC / tab$t

  # sort tab results based on assayNames(fit)
  tab$assay <- factor(tab$assay, lvls)

  # convert to matricies
  B <- tabToMatrix(tab, "logFC")
  S <- tabToMatrix(tab, "se")

  # only keep columns with variance in logFC
  cv <- colVars(B, na.rm = TRUE, useNames = TRUE)
  keep <- (cv > 0) & !is.na(cv)
  B <- B[, keep, drop = FALSE]
  S <- S[, keep, drop = FALSE]

  # run mashr on these matricies
  #-----------------------------

  # set up
  # NA's are replaced with beta = 0 with se = 1e6
  data <- mash_set_data(B, S)

  # estimate model parameters
  U.c <- cov_canonical(data)

  # Estimate correlation structure
  V.em <- mash_estimate_corr_em(data, U.c, details = TRUE)

  # copy model to drop NA terms
  model <- V.em$mash.model

  # B has the same ordering as these, so replace corresponding elements with NA
  # this revents non-sensiccal results for coefficients that were originally NA
  idx <- which(is.na(B))
  model$result$PosteriorMean[idx] <- NA
  model$result$PosteriorSD[idx] <- NA
  model$result$NegativeProb[idx] <- NA
  model$result$lfsr[idx] <- NA

  # format results as new object
  new("dreamlet_mash_result", list(model = model, logFC.original = B, coefList = coefList))
}
GabrielHoffman/dreamlet documentation built on July 20, 2024, 9:03 p.m.