R/plotForest.R

#' Forest plot
#'
#' Forest plot
#'
#' @param x result from \code{dreamlet}
#' @param gene gene to show results for
#' @param coef coefficient to test with \code{topTable}
#' @param assays array of assays to plot
#' @param ylim limits for the y axis
#' @param ... other arguments
#'
#' @return Plot showing effect sizes
#'
#' @examples
#' library(muscat)
#' library(SingleCellExperiment)
#'
#' data(example_sce)
#'
#' # create pseudobulk for each sample and cell cluster
#' pb <- aggregateToPseudoBulk(example_sce,
#'   assay = "counts",
#'   cluster_id = "cluster_id",
#'   sample_id = "sample_id",
#'   verbose = FALSE
#' )
#'
#' # voom-style normalization
#' res.proc <- processAssays(pb, ~group_id)
#'
#' # Differential expression analysis within each assay,
#' # evaluated on the voom normalized data
#' res.dl <- dreamlet(res.proc, ~group_id)
#'
#' # show coefficients estimated for each cell type
#' coefNames(res.dl)
#'
#' # Show estimated log fold change with in each cell type
#' plotForest(res.dl, gene = "ISG20", coef = "group_idstim")
#'
#' @rdname plotForest-methods
#' @export
setGeneric("plotForest", function(x, gene, coef, ...) {
  standardGeneric("plotForest")
})





#' @rdname plotForest-methods
#' @aliases plotForest,dreamletResult-method
#' @export
setMethod(
  "plotForest", signature(x = "dreamletResult"),
  function(x, gene, coef, assays = names(x), ylim = NULL) {
    # Pass R CMD check
    Assay <- logFC <- se <- adj.P.Val <- NULL

    df <- topTable(x, coef = coef, number = Inf)
    df$se <- df$logFC / df$t
    df <- as.data.frame(df)
    df <- df[df$assay %in% assays, , drop = FALSE]
    df$assay <- factor(df$assay, assays)

    ggplot(df[df$ID == gene, , drop = FALSE], aes(assay, logFC, color = -log10(pmax(1e-4, adj.P.Val)))) +
      geom_point() +
      geom_errorbar(aes(ymin = logFC - 1.96 * se, ymax = logFC + 1.96 * se), width = 0) +
      theme_classic() +
      theme(plot.title = element_text(hjust = 0.5)) +
      coord_flip(ylim = ylim) +
      ggtitle(gene) +
      ylab(bquote(log[2] ~ fold ~ change)) +
      geom_hline(yintercept = 0, linetype = "dashed") +
      scale_color_gradient(name = bquote(-log[10] ~ FDR), low = "grey", high = "red", limits = c(0, 4)) +
      xlab("")
  }
)





#' @rdname plotForest-methods
#' @aliases plotForest,dreamlet_mash_result-method
#' @importFrom ashr get_pm get_lfsr get_psd
#' @export
setMethod(
  "plotForest", signature(x = "dreamlet_mash_result"),
  function(x, gene, coef, assays = colnames(x$logFC.original), ylim = NULL) {
    # Pass R CMD check
    ID <- logFC <- lFSR <- se <- NULL

    # extract mashr statistics
    df_logFC <- reshape2::melt(get_pm(x$model))
    colnames(df_logFC) <- c("Gene", "ID", "logFC")
    df_logFC$key <- paste(df_logFC$Gene, df_logFC$ID)

    df_lfsr <- reshape2::melt(get_lfsr(x$model))
    colnames(df_lfsr) <- c("Gene", "ID", "lFSR")
    df_lfsr$key <- paste(df_lfsr$Gene, df_lfsr$ID)

    df_se <- reshape2::melt(get_psd(x$model))
    colnames(df_se) <- c("Gene", "ID", "se")
    df_se$key <- paste(df_se$Gene, df_se$ID)

    # merge mashr statistics
    df <- merge(df_logFC, df_lfsr, by = "key")
    df <- merge(df, df_se, by = "key")

    df <- df[df$ID %in% assays, , drop = FALSE]
    df$ID <- factor(df$ID, assays)

    # drop NA values
    df <- df[!is.na(df$logFC), , drop = FALSE]

    # make plot
    ggplot(df[df$Gene.x == gene, , drop = FALSE], aes(ID, logFC, color = -log10(pmax(1e-4, lFSR)))) +
      geom_point() +
      geom_errorbar(aes(ymin = logFC - 1.96 * se, ymax = logFC + 1.96 * se), width = 0) +
      theme_classic() +
      theme(plot.title = element_text(hjust = 0.5)) +
      coord_flip(ylim = ylim) +
      ggtitle(gene) +
      ylab(bquote(log[2] ~ fold ~ change)) +
      geom_hline(yintercept = 0, linetype = "dashed") +
      scale_color_gradient(name = bquote(-log[10] ~ lFSR), low = "grey", high = "red", limits = c(0, 4)) +
      xlab("")
  }
)
GabrielHoffman/dreamlet documentation built on Nov. 8, 2024, 2:45 a.m.