## ---- eval = TRUE, ECHO = FALSE , include = FALSE-----------------------------
knitr::opts_chunk$set(collapse = TRUE, fig.width = 9, comment = "#>")
#knitr::opts_chunk$set(fig.path = '../test4Spise2018/lesFigs4Ferment/')
#knitr::opts_chunk$set(tex.path = '../test4Spise2018/lesFigs4Ferment/')
# Knitr options here
knitr::opts_knit$get()
## ----pdfIt, echo = FALSE, warning = FALSE, eval = FALSE-----------------------
# # This code can be used to generate pdf or words
# rmarkdown::render('../test4Spise2018/fermentationMCA.Rmd',
# c('bookdown::pdf_document2','bookdown::html_document2') ) ,
# intermediates_dir = '../../test4Spise2018/stuff4Ferment/')
# rmarkdown::render('../test4Spise2018/fermentationMCA.Rmd',
# c('bookdown::pdf_document2','bookdown::html_document2'),
# output_dir = '../../test4Spise2018/stuff4Ferment/')
# # Previous command cannot pass options such as keep_tex
# # to do so run only one format at a time such as:
# rmarkdown::render("fermentationIn2NationsMCA.Rmd",
# bookdown::pdf_document2(keep_tex = TRUE,
# toc_depth = 3) ,
# output_dir = '../../test4Spise2018/stuff4Ferment/')
# # rmarkdown::render('../test4Spise2018/fermentationMCA.Rmd','tufte::tufte_html')
# # Not tufte works only with 2 levels of section
# # rmarkdown::render('../test4Spise2018/fermentationMCA.Rmd',tufte::tufte_handout(toc_depth = 2))
# # rmarkdown::render('../test4Spise2018/fermentationMCA.Rmd','html_notebook')
# # better
# # xaringan::inf_mr()
# # pretty format
# rmarkdown::render('../../test4Spise2018/fermentationMCA.Rmd',
# prettydoc::html_pretty(keep_tex = "hpstr",
# toc_depth = 3) )
# rmarkdown::render('../../test4Spise2018/fermentationMCA.Rmd',
# rmdformats::html_clean(keep_tex = TRUE
# ) )
## ---- include = TRUE, echo = TRUE---------------------------------------------
rm(list = ls())
graphics.off()
## ----setup, include = FALSE, ECHO = FALSE-------------------------------------
# Important: Remember
# build the vignettes with devtools::build_vignettes()
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.height = 9,
fig.width = 8
)
## ---- eval = FALSE,ECHO = FALSE , include = FALSE-----------------------------
# knitr::opts_knit$get()
## ----loadPackages-------------------------------------------------------------
# Decomment all/some these lines if the packages are not installed
#_____________________________________________________________________
# # October 19, 2018. Temporary fix for an Rstudio problem
# # if this error message is generated:
# build_site()
# Error in eval(substitute(expr), data, enclos = parent.frame()) :
# is.character(repos) is not TRUE
# # from Rstudio team: as a temporary fix use these two lines
# repos <- getOption("repos")
# options(repos = setNames(as.character(repos), names(repos)))
#_____________________________________________________________________
#
# devtools::install_github('HerveAbdi/PTCA4CATA')
# devtools::install_github('HerveAbdi/DistatisR')
# devtools::install_github('HerveAbdi/data4PCCAR')
# devtools::install_github('HerveAbdi/R4SPISE2018') # of course!
# install.packages('prettyGraphs')
# install.packages('Matrix')
# install.packages('dplyr')
# install.packages('gridExtra')
# install.packages('grid')
# install.packages('gtable')
# install.packages('stringi')
# install.packages('printr')
# install.packages('kableExtra')
# load the libraries that we will need
# suppressMessages(library(Matrix))
suppressMessages(library(prettyGraphs))
suppressMessages(library(ExPosition))
suppressMessages(library(InPosition))
suppressMessages(library(DistatisR))
suppressMessages(library(PTCA4CATA))
suppressMessages(library(data4PCCAR))
suppressMessages(library(dplyr))
suppressMessages(library(gridExtra)) # to save a table as a graph
suppressMessages(library(grid)) # that will be saved in the
suppressMessages(library(gtable)) # powerpoint with the figures
# suppressMessages(library(printr)) # To pretty print tables
# suppressMessages(library(kableExtra)) # To pretty print tables
## ----name4pptx----------------------------------------------------------------
name4Graphs = 'fermentationFrom2Countries_withJsup.pptx'
## ----filename, eval = TRUE----------------------------------------------------
file2read.name <- 'fermentedFoodSurvey.xlsx' # xls data file name
path2file <- system.file("extdata", file2read.name, package = "R4SPISE2018")
## ----sheetName----------------------------------------------------------------
sheetName4Data <- 'dataMCA' # sheet name for the data
## ----xls.datafile, echo=FALSE, fig.cap="The Data Excel File \\label{fig:spicesxl}", fig.height=3, fig.width=4, include=TRUE, out.width='70%'----
knitr::include_graphics('../man/figures/fermentationXlsFile.png')
## ----resdSortingData----------------------------------------------------------
rawData.tmp <- DistatisR::read.df.excel(path = path2file,
sheet = sheetName4Data)$df.data
#
## -----------------------------------------------------------------------------
# Transform the data into factors
rawData <- apply(rawData.tmp,2,as.factor)
## ----summary------------------------------------------------------------------
knitr::kable( t( summary(rawData) ) )
## ----maketmpData--------------------------------------------------------------
temp.df <- dplyr::select(as.data.frame(rawData),
supVar,
sex , age, occupation, nation, frequency,
Wpreservation, Wquality, Whealth, Wtaste,
fish, cereal, vegetable, fruit, meat,
quality, industrial, preservation, health,
expensive, taste, trust, clear, innovation)
## ----recodeAge----------------------------------------------------------------
temp.df[,'age'] <- plyr::mapvalues(temp.df[,'age'],
from = c("<25", ">25"), to = c("Y", "O"))
temp.df[,'occupation'] <- plyr::mapvalues(temp.df[,'occupation'],
from = c("FM", "other"), to = c("F", "O"))
temp.df[,'nation'] <- plyr::mapvalues(temp.df[,'nation'],
from = c("F", "VN"), to = c("F", "V"))
## ----cleanData----------------------------------------------------------------
cleanData.tmp <- temp.df
cleanData.tmp <- cleanData.tmp[complete.cases(cleanData.tmp),]
cleanData.allVar <- cleanData.tmp[cleanData.tmp[,1] == 'A', 2:ncol(cleanData.tmp)]
cleanData.varSup <- cleanData.allVar[,1:4]
cleanData <- cleanData.allVar[,5:ncol(cleanData.allVar)]
cleanData.sup <- cleanData.tmp[cleanData.tmp[,1] == 'S', 6:ncol(cleanData.tmp)]
## ----runMCA-------------------------------------------------------------------
resMCA <- epMCA(cleanData, graphs = FALSE)
## ----runMCA.sup---------------------------------------------------------------
# recode the factors as set of 0/1 variables
testclean <- makeNominalData(rbind(cleanData,cleanData.sup))
clean.Sup <- testclean[cleanData.tmp[,1] == 'S',]
# barycentric code for nation
#clean.Sup[,(colnames(testclean) %in% 'nation.F')] <- .5
#clean.Sup[,(colnames(testclean) %in% 'nation.V')] <- .5
#
resMCA.sup <- supplementaryRows(SUP.DATA = clean.Sup, res = resMCA)
colnames(resMCA.sup$fii) <- paste0('Dimension ',
1:ncol(resMCA.sup$fii))
## ----runMCA.varsup------------------------------------------------------------
#
resMCA.varSup <- supplementaryCols(SUP.DATA = makeNominalData(cleanData.varSup),
res = resMCA)
colnames(resMCA.varSup$fjj) <- paste0('Dimension ',
1:ncol(resMCA.varSup$fjj))
## ----inferences, message = FALSE, warning = FALSE, results= FALSE-------------
resMCA.inf <- epMCA.inference.battery(cleanData, graphs = FALSE)
## ----screeMCA, fig.height=4, fig.width= 7-------------------------------------
scree.mca <- PlotScree(ev = resMCA$ExPosition.Data$eigs,
title = "MCA. Explained Variance per Dimension")
b0001a.Scree <- recordPlot() # Save the plot
## ----screeMCA.inf, fig.height=4, fig.width= 7---------------------------------
scree.mca <- PlotScree(ev = resMCA$ExPosition.Data$eigs,
p.ev = resMCA.inf$Inference.Data$components$p.vals,
plotKaiser = TRUE,
title = "MCA. Explained Variance per Dimension")
b0001b.Scree <- recordPlot() # Save the plot
## ----colors-------------------------------------------------------------------
cJ <- resMCA$ExPosition.Data$cj
color4Var <- prettyGraphs::prettyGraphsColorSelection(ncol(cleanData))
## ----phi2---------------------------------------------------------------------
# Pseudo Heat Map. Correlation ----
# We need correlation to compare with PCA
corrMatBurt.list <- phi2Mat4BurtTable(cleanData)
col <- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", "#4477AA"))
corr4MCA.r <- corrplot::corrplot(
as.matrix(corrMatBurt.list$phi2.mat^(1/2)),# to get correlations
method="color", col=col(200),
type="upper",
addCoef.col = "black", # Add coefficient of correlation
tl.col = color4Var,
tl.cex = .9,
tl.srt = 45, #Text label color and rotation
number.cex = .8,
diag = TRUE # needed to have the color of variables correct
)
# dev.new()
a0000.corMat.phi <- recordPlot()
## ----ctrVar-------------------------------------------------------------------
varCtr <- data4PCCAR::ctr4Variables(cJ)
rownames(color4Var) <- rownames(varCtr)
## ----ctrVar.Tab---------------------------------------------------------------
nFact <- min(5, ncol(cJ) - 1)
#knitr::kable(round( varCtr[,1:nFact]*1000 ) )
# save table as a graph
ctrTable <- tableGrob(round(varCtr[,1:nFact]*1000))
h <- grobHeight(ctrTable)
w <- grobWidth(ctrTable)
title <- textGrob("Variable Contributions",
y = unit(0.5,"npc") + 0.92*h,
# fine tune the position of the title
just = "centre",
gp = gpar(fontsize = 14))
TableWithTitle <- gTree(children = gList(ctrTable, title))
## ---- fig.height= 10, fig.width= 6, fig.cap = 'Variable Contributions (per mille). \\label{fig:varCtr}', collapse = TRUE, fig.margin = TRUE----
# Note: Potential problems with grid.draw(). If it does not plot
# recordPlot() will fail and the graph will not be saved in the powerpoint
# and will generate a strange error message
grid.draw(TableWithTitle)
#a0000.2.ctrTable <- recordPlot()
## ----printr, echo = FALSE, message = FALSE-----------------------------------
# As an alternative we print the contributions with a combination
#of `kable` and `printr` as:
laTable <- round(varCtr[,1:nFact]*1000)
# knitr::kable(round(varCtr[,1:nFact]*1000), caption = 'Variable Contributions')
# %>%
# kable_styling(latex_options = c("striped", "hold_position"), full_width = F) %>%
# add_header_above(c(" ", "Dimensions" = nFact))
## ----color4Levels-------------------------------------------------------------
col4Levels <- data4PCCAR::coloringLevels(
rownames(resMCA$ExPosition.Data$fj), color4Var)
col4Labels <- col4Levels$color4Levels
## ----ctrV1--------------------------------------------------------------------
varCtr1 <- varCtr[,1]
names(varCtr1) <- rownames(varCtr)
a0005.Var.ctr1 <- PrettyBarPlot2(varCtr1,
main = 'Variable Contributions: Dimension 1',
ylim = c(-.05, 1.2*max(varCtr1)),
font.size = 5,
threshold = 1 / nrow(varCtr),
color4bar = gplots::col2hex(color4Var)
)
print(a0005.Var.ctr1)
## ----ctrV2--------------------------------------------------------------------
varCtr2 <- varCtr[,2]
names(varCtr2) <- rownames(varCtr)
a0006.Var.ctr2 <- PrettyBarPlot2(varCtr2,
main = 'Variable Contributions: Dimension 2',
ylim = c(-.05, 1.2*max(varCtr2)),
threshold = 1 / nrow(varCtr),
font.size = 5,
color4bar = gplots::col2hex(color4Var)
)
print(a0006.Var.ctr2)
## ----ctrV3--------------------------------------------------------------------
varCtr3 <- varCtr[,3]
names(varCtr3) <- rownames(varCtr)
a0006.Var.ctr3 <- PrettyBarPlot2(varCtr3,
main = 'Variable Contributions: Dimension 3',
ylim = c(-.05, 1.2*max(varCtr2)),
threshold = 1 / nrow(varCtr),
font.size = 5,
color4bar = gplots::col2hex(color4Var)
)
print(a0006.Var.ctr3)
## ----ctrV12-------------------------------------------------------------------
ctrV12 <- PTCA4CATA::createFactorMap(X = varCtr,
title = "Variable Contributions",
col.points = color4Var,
col.labels = color4Var,
alpha.points = 0.5,
cex = 2.5,
alpha.labels = 1,
text.cex = 4,
font.face = "plain",
font.family = "sans")
ctr.labels <- createxyLabels.gen(
1,2, lambda = resMCA$ExPosition.Data$eigs,
tau = resMCA$ExPosition.Data$t
)
a0007.Var.ctr12 <- ctrV12$zeMap + ctr.labels
#
print(a0007.Var.ctr12)
## ----getCtr12-----------------------------------------------------------------
var12 <- data4PCCAR::getImportantCtr(ctr = varCtr,
eig = resMCA$ExPosition.Data$eigs)
importantVar <- var12$importantCtr.1or2
col4ImportantVar <- color4Var
col4NS <- 'gray90'
col4ImportantVar[!importantVar] <- col4NS
## ----ctrV12.ns----------------------------------------------------------------
ctrV12.imp <- PTCA4CATA::createFactorMap(X = varCtr,
title = "Important Variables: Contributions",
col.points = col4ImportantVar,
col.labels = col4ImportantVar,
alpha.points = 0.5,
cex = 2.5,
alpha.labels = 1,
text.cex = 4,
font.face = "plain",
font.family = "sans")
a0008.Var.ctr12.imp <- ctrV12.imp$zeMap + ctr.labels
#
print(a0008.Var.ctr12.imp)
## ----getCtr23-----------------------------------------------------------------
#
var32 <- data4PCCAR::getImportantCtr(ctr = varCtr,
eig = resMCA$ExPosition.Data$eigs,
axis1 = 3, axis2 = 2)
importantVar23 <- var32$importantCtr.1or2
col4ImportantVar23 <- color4Var
col4NS <- 'gray90'
col4ImportantVar23[!importantVar23] <- col4NS
## ----ctrV23.ns----------------------------------------------------------------
ctrV23.imp <- PTCA4CATA::createFactorMap(X = varCtr,
axis1 = 3, axis2 = 2,
title = "Important Variables: Contributions 3 * 2",
col.points = col4ImportantVar23,
col.labels = col4ImportantVar23,
alpha.points = 0.5,
cex = 2.5,
alpha.labels = 1,
text.cex = 4,
font.face = "plain",
font.family = "sans")
ctr.labels23 <- createxyLabels.gen(
3,2, lambda = resMCA$ExPosition.Data$eigs,
tau = resMCA$ExPosition.Data$t
)
a0009.Var.ctr23.imp <- ctrV23.imp$zeMap + ctr.labels23
#
print(a0009.Var.ctr23.imp)
## ----BR4var-------------------------------------------------------------------
# Get the pseudo Bootstrap Ratios
BrLevels <- resMCA.inf$Inference.Data$fj.boots$tests$boot.ratios
wJ <- 1 / resMCA.inf$Fixed.Data$ExPosition.Data$W
nIter <- 1000
Br4Variables <- data4PCCAR::BR4varMCA(BrLevels, wJ, nIter)
## ----BR41---------------------------------------------------------------------
VarBR1 <- Br4Variables$pseudoBR.pos[,1]
c0010.Var.br1 <- PrettyBarPlot2(VarBR1,
main = 'Variable Pseudo Bootstrap Ratios: Dimension 1',
ylim = 2,
threshold = 2,
font.size = 5,
color4bar = gplots::col2hex(color4Var)
)
print(c0010.Var.br1)
## ----BR42---------------------------------------------------------------------
VarBR2 <- Br4Variables$pseudoBR.pos[,2]
c0011.Var.br2 <- PrettyBarPlot2(VarBR2,
main = 'Variable Pseudo Bootstrap Ratios: Dimension 2',
ylim = 2,
threshold = 2,
font.size = 5,
color4bar = gplots::col2hex(color4Var)
)
print(c0011.Var.br2)
## ----BR43---------------------------------------------------------------------
VarBR3 <- Br4Variables$pseudoBR.pos[,3]
c0012.Var.br3 <- PrettyBarPlot2(VarBR3,
main = 'Variable Pseudo Bootstrap Ratios: Dimension 3',
ylim = 2,
threshold = 2,
font.size = 5,
color4bar = gplots::col2hex(color4Var)
)
print(c0012.Var.br3)
## ----createFjMap--------------------------------------------------------------
axis1 = 1
axis2 = 2
Fj <- resMCA$ExPosition.Data$fj
# generate the set of maps
BaseMap.Fj <- createFactorMap(X = Fj , # resMCA$ExPosition.Data$fj,
axis1 = axis1, axis2 = axis2,
title = 'MCA. Variables',
col.points = col4Labels, cex = 1,
col.labels = col4Labels, text.cex = 2.5,
force = 2)
# add labels
labels4MCA <- createxyLabels.gen(x_axis = axis1, y_axis = axis2,
lambda = resMCA$ExPosition.Data$eigs,
tau = resMCA$ExPosition.Data$t)
# make the maps
b0002.BaseMap.Fj <- BaseMap.Fj$zeMap + labels4MCA
b0003.BaseMapNoDot.Fj <- BaseMap.Fj$zeMap_background +
BaseMap.Fj$zeMap_text + labels4MCA
## ----plotaMap, fig.width= 8 , fig_width = '100%'------------------------------
print(b0002.BaseMap.Fj)
## ----mapJ-grey----------------------------------------------------------------
col4Levels.imp <- data4PCCAR::coloringLevels(rownames(Fj),
col4ImportantVar)
BaseMap.Fj.imp <- createFactorMap(X = Fj , # resMCA$ExPosition.Data$fj,
axis1 = axis1, axis2 = axis2,
title = 'MCA. Important Variables',
col.points = col4Levels.imp$color4Levels,
cex = 1,
col.labels = col4Levels.imp$color4Levels,
text.cex = 2.5,
force = 2)
b0010.BaseMap.Fj <- BaseMap.Fj.imp$zeMap + labels4MCA
print(b0010.BaseMap.Fj)
## ----adLines------------------------------------------------------------------
lines4J <- addLines4MCA(Fj, col4Var = col4Levels.imp$color4Variables, size = .7)
b0020.BaseMap.Fj <- b0010.BaseMap.Fj + lines4J
print( b0020.BaseMap.Fj)
## ----someLines----------------------------------------------------------------
zeNames <- getVarNames(rownames(Fj))
importantsLabels <- zeNames$stripedNames %in% zeNames$variableNames[importantVar]
Fj.imp <- Fj[importantsLabels,]
lines4J.imp <- addLines4MCA(Fj.imp,
col4Var = col4Levels$color4Variables[which(importantVar)],
size = .9, linetype = 3, alpha = .5)
b0021.BaseMap.Fj <- b0010.BaseMap.Fj + lines4J.imp
print( b0021.BaseMap.Fj)
## ----mapJ23-grey--------------------------------------------------------------
col4Levels23.imp <- data4PCCAR::coloringLevels(rownames(Fj),
col4ImportantVar23)
axis3 = 3
BaseMap.Fj23.imp <- createFactorMap(X = Fj , # resMCA$ExPosition.Data$fj,
axis1 = axis3, axis2 = axis2,
title = 'MCA. Important Variables. Dimensions 2 & 3',
col.points = col4Levels23.imp$color4Levels,
cex = 1,
col.labels = col4Levels23.imp$color4Levels,
text.cex = 2.5,
force = 2)
labels4MCA23 <- createxyLabels.gen(x_axis = axis3, y_axis = axis2,
lambda = resMCA$ExPosition.Data$eigs,
tau = resMCA$ExPosition.Data$t)
b0030.BaseMap.Fj23 <- BaseMap.Fj23.imp$zeMap + labels4MCA23
# zeNames <- getVarNames(rownames(Fj))
importantsLabels23 <- zeNames$stripedNames %in% zeNames$variableNames[importantVar23]
Fj23.imp <- Fj[importantsLabels23,]
lines4J23.imp <- addLines4MCA(Fj23.imp,
col4Var = col4Levels$color4Variables[
which(importantVar23)],
axis_h = axis3,
axis_v = axis2,
size = .9, linetype = 3, alpha = .5)
b0031.BaseMap.Fj23 <- b0030.BaseMap.Fj23 + lines4J23.imp
print( b0031.BaseMap.Fj23)
## ----mapvarSup----------------------------------------------------------------
col4VarSup <- prettyGraphs::prettyGraphsColorSelection(ncol(cleanData.varSup))
Fj.sup <- resMCA.varSup$fjj
col4Levels.sup <- data4PCCAR::coloringLevels(rownames(Fj.sup), col4VarSup)
BaseMap.Fj.sup <- createFactorMap(X = Fj.sup , # resMCA$ExPosition.Data$fj,
axis1 = axis1, axis2 = axis2,
constraints = BaseMap.Fj$constraints, # to get same size
title = 'MCA. Supplementary and Important Variables',
col.points = col4Levels.sup$color4Levels,
cex = 1,
col.labels = col4Levels.sup$color4Levels,
text.cex = 2.5,
force = 2)
lines4J.sup <- addLines4MCA(Fj.sup,
col4Var = col4Levels.sup$color4Variables, size = .7)
b0030.Sup.Fj <- BaseMap.Fj.sup$zeMap +
BaseMap.Fj.imp$zeMap_dots +
BaseMap.Fj.imp$zeMap_text +
labels4MCA +
lines4J + lines4J.sup
print(b0030.Sup.Fj)
## ----mapvarSup.only-----------------------------------------------------------
b0031.Sup.Fj.only <- BaseMap.Fj.sup$zeMap +
BaseMap.Fj.imp$zeMap_dots +
labels4MCA +
lines4J.sup
print(b0031.Sup.Fj.only)
## ----BR1----------------------------------------------------------------------
c0001.Levels.BR <- PrettyBarPlot2(
resMCA.inf$Inference.Data$fj.boots$tests$boot.ratios[,1], # BR
main = 'Bootstrap Ratios for Columns : Dimension 1',
threshold = 2,
color4bar = gplots::col2hex(col4Labels)
)
print(c0001.Levels.BR)
## ----createFiMap--------------------------------------------------------------
Fi <- resMCA$ExPosition.Data$fi
colCity <- c('darkblue', 'red4')
nI <- nrow(Fi)
col4I.City <- rep("",nI)
for (i in 1:length(colCity) ){
lindex <- cleanData.allVar[,'nation'] %in% unique(cleanData.allVar[,'nation'])[i]
col4I.City[lindex] <- colCity[i]
}
# generate the set of maps
BaseMap.Fi <- createFactorMap(X = Fi , # resMCA$ExPosition.Data$fj,
axis1 = axis1, axis2 = axis2,
title = 'MCA. Observations (by nation)',
col.points = col4I.City,
alpha.points = .4, cex = .9,
col.labels = col4I.City,
text.cex = 2.5,
force = 2)
# make the maps
d0001.BaseMapNoLabels.Fi <- BaseMap.Fi$zeMap_background +
BaseMap.Fi$zeMap_dots + labels4MCA
## ----plotaMapi, fig.width= 8--------------------------------------------------
print(d0001.BaseMapNoLabels.Fi)
## ----Boot4CI------------------------------------------------------------------
# Bootstrap for CI:
BootCube.Gr <- PTCA4CATA::Boot4Mean(resMCA$ExPosition.Data$fi,
design = cleanData.allVar$nation,
niter = 100,
suppressProgressBar = TRUE)
nationsMeans <- PTCA4CATA::getMeans(resMCA$ExPosition.Data$fi, cleanData.allVar$nation)
# colCity <- c('darkblue', 'red4')
MapGroup <- PTCA4CATA::createFactorMap(nationsMeans,
# use the constraint from the main map
constraints = BaseMap.Fi$constraints,
col.points = colCity,
cex = 7, # size of the dot (bigger)
col.labels = colCity,
text.cex = 6)
d002.Map.I.withMeans <- d0001.BaseMapNoLabels.Fi +
MapGroup$zeMap_dots + MapGroup$zeMap_text
print(d002.Map.I.withMeans)
## ----graphElli----------------------------------------------------------------
GraphElli <- PTCA4CATA::MakeCIEllipses(BootCube.Gr$BootCube[,1:2,],
names.of.factors = c("Dimension 1","Dimension 2"),
col = colCity,
p.level = .95)
d003.Map.I.withCI <- d0001.BaseMapNoLabels.Fi +
MapGroup$zeMap_text + GraphElli
print(d003.Map.I.withCI)
## ----TI-----------------------------------------------------------------------
GraphTI.Hull <- PTCA4CATA::MakeToleranceIntervals(resMCA$ExPosition.Data$fi,
design = as.factor(cleanData.allVar$nation),
# line below is needed
names.of.factors = c("Dim1","Dim2"), # needed
col = colCity,
line.size = .50,
line.type = 3,
alpha.ellipse = .2,
alpha.line = .4,
p.level = .75)
#_____________________________________________________________________
# Create the map:
d005.Map.I.withTIHull <- d002.Map.I.withMeans +
GraphTI.Hull + MapGroup$zeMap_dots +
MapGroup$zeMap_text + MapGroup$zeMap_dots
#_____________________________________________________________________
# plot it
# dev.new()
print(d005.Map.I.withTIHull)
## ----createFiMap.sup----------------------------------------------------------
Fi.sup <- resMCA.sup$fii
col <- 'green'
nI.sup <- nrow(Fi.sup)
col4I.sup <- rep("",nI.sup)
# generate the set of maps
BaseMap.Fi.sup <- createFactorMap(X = Fi.sup , # resMCA$ExPosition.Data$fj,
axis1 = axis1, axis2 = axis2,
constraints = BaseMap.Fi$constraints,
title = '',
col.points = 'green',
alpha.points = .2, cex = 1.2,
col.labels = 'green',
text.cex = 2.5,
force = 2)
# make the maps
e0001.BaseMapNoLabels.Fi.sup <- BaseMap.Fi$zeMap_background +
BaseMap.Fi.sup$zeMap_dots +
BaseMap.Fi.sup$zeMap_text +
BaseMap.Fi$zeMap_dots +
ggplot2::ggtitle('MCA Active and Supplementary Observations') +
labels4MCA
## ----plotaMapi.sup, fig.width= 8----------------------------------------------
print(e0001.BaseMapNoLabels.Fi.sup)
## ----saveGraphs, message = FALSE, warning = FALSE, error = FALSE, eval = FALSE----
# list2Graphs <- PTCA4CATA::saveGraph2pptx(file2Save.pptx = name4Graphs,
# title = 'Attitudes toward fermented products',
# addGraphNames = TRUE)
## ----powerpoint, message = FALSE, warning = FALSE, error = FALSE, eval = FALSE----
# output:
# powerpoint_presentation:
# slide_level: 4
## ----vignettes, message = FALSE, warning = FALSE, error = FALSE, eval = FALSE----
# output:
# rmarkdown::html_vignette:
# toc: true
# number_sections: true
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.