| ssc.DEGene.limma | R Documentation | 
identify differential genes of each cluster (comparing the cluster with all others), using limma
ssc.DEGene.limma(
  obj,
  assay.name = "exprs",
  ncell.downsample = NULL,
  group.var = "majorCluster",
  group.list = NULL,
  group.mode = "multi",
  batch = NULL,
  out.prefix = NULL,
  n.cores = NULL,
  do.plot = T,
  T.fdr = 0.01,
  T.logFC = 1,
  T.expr = 0.3,
  T.bin.useZ = T,
  verbose = 1,
  do.force = F,
  method = "limma"
)
obj | 
 object of   | 
assay.name | 
 character; which assay (default: "exprs")  | 
ncell.downsample | 
 integer; for each group, number of cells downsample to. (default: NULL)  | 
group.var | 
 character; column in the colData(obj) used for grouping. (default: "majorCluster")  | 
group.list | 
 character; DEG of groups to calculate. If NULL, all groups. (default: "NULL")  | 
group.mode | 
 character; One of "multi", "multiAsTwo" (default: "multi")  | 
batch | 
 character; covariate. (default: NULL)  | 
out.prefix | 
 character; output prefix. (default: NULL)  | 
n.cores | 
 integer; number of cores used, if NULL it will be determined automatically (default: NULL)  | 
do.plot | 
 logical; whether plot. (default: TRUE)  | 
T.fdr | 
 numeric; threshold of the adjusted p value of moderated t-test (default: 0.05)  | 
T.logFC | 
 numeric; threshold of the absoute diff (default: 1)  | 
T.expr | 
 numeric; threshold for binarizing exprs (default: 0.3)  | 
T.bin.useZ | 
 logical; wheter use the z-score version of assay.namme for binarizing exprs (default: T)  | 
verbose | 
 integer; verbose level. (default: 1)  | 
do.force | 
 logical; . (default: FALSE)  | 
method | 
 character; . (default: "limma")  | 
identify differential genes using limma
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.