ssc.DEGene.limma | R Documentation |
identify differential genes of each cluster (comparing the cluster with all others), using limma
ssc.DEGene.limma(
obj,
assay.name = "exprs",
ncell.downsample = NULL,
group.var = "majorCluster",
group.list = NULL,
group.mode = "multi",
batch = NULL,
out.prefix = NULL,
n.cores = NULL,
do.plot = T,
T.fdr = 0.01,
T.logFC = 1,
T.expr = 0.3,
T.bin.useZ = T,
verbose = 1,
do.force = F,
method = "limma"
)
obj |
object of |
assay.name |
character; which assay (default: "exprs") |
ncell.downsample |
integer; for each group, number of cells downsample to. (default: NULL) |
group.var |
character; column in the colData(obj) used for grouping. (default: "majorCluster") |
group.list |
character; DEG of groups to calculate. If NULL, all groups. (default: "NULL") |
group.mode |
character; One of "multi", "multiAsTwo" (default: "multi") |
batch |
character; covariate. (default: NULL) |
out.prefix |
character; output prefix. (default: NULL) |
n.cores |
integer; number of cores used, if NULL it will be determined automatically (default: NULL) |
do.plot |
logical; whether plot. (default: TRUE) |
T.fdr |
numeric; threshold of the adjusted p value of moderated t-test (default: 0.05) |
T.logFC |
numeric; threshold of the absoute diff (default: 1) |
T.expr |
numeric; threshold for binarizing exprs (default: 0.3) |
T.bin.useZ |
logical; wheter use the z-score version of assay.namme for binarizing exprs (default: T) |
verbose |
integer; verbose level. (default: 1) |
do.force |
logical; . (default: FALSE) |
method |
character; . (default: "limma") |
identify differential genes using limma
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.